Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 157469 by mnjuly1970 last updated on 23/Oct/21

      calculate :   Ω:= ∫_(0 ) ^( 1) (( ln(1+x).ln(1−x))/(1+x)) dx =?

calculate:Ω:=01ln(1+x).ln(1x)1+xdx=?

Answered by qaz last updated on 23/Oct/21

∫_0 ^1 ((ln(1+x)ln(1−x))/(1+x))dx  =∫_1 ^2 ((lnxln(2−x))/x)dx  =∫_(1/2) ^1 (((ln2+lnx)(ln2+ln(1−x)))/x)dx  =∫_(1/2) ^1 ((ln^2 2+ln2(lnx+ln(1−x))+lnxln(1−x))/x)dx  =ln^3 2+ln2∙(−(1/2)ln^2 2+∫_(1/2) ^1 ((ln(1−x))/x)dx)+∫_(1/2) ^1 ((lnxln(1−x))/x)dx  =(1/2)ln^3 2+ln2(Li_2 ((1/2))−Li_2 (1))−lnx∙Li_2 (x)∣_(1/2) ^1 +Li_3 (1)−Li_3 ((1/2))  =(1/2)ln^3 2−(π^2 /6)ln2−ln2∙Li_2 ((1/2))−ln2∙Li_2 ((1/2))+ζ(3)−Li_3 ((1/2))  =−(π^2 /4)ln2+(4/3)ln^3 2+(1/8)ζ(3)  −−−−−−−−−−−−−−−−−  Li_2 ((1/2))=−(1/2)ln^2 2+(π^2 /(12))  Li_3 ((1/2))=−(π^2 /(12))ln2+(1/6)ln^3 2+(7/8)ζ(3)

01ln(1+x)ln(1x)1+xdx=12lnxln(2x)xdx=1/21(ln2+lnx)(ln2+ln(1x))xdx=1/21ln22+ln2(lnx+ln(1x))+lnxln(1x)xdx=ln32+ln2(12ln22+1/21ln(1x)xdx)+1/21lnxln(1x)xdx=12ln32+ln2(Li2(12)Li2(1))lnxLi2(x)1/21+Li3(1)Li3(12)=12ln32π26ln2ln2Li2(12)ln2Li2(12)+ζ(3)Li3(12)=π24ln2+43ln32+18ζ(3)Li2(12)=12ln22+π212Li3(12)=π212ln2+16ln32+78ζ(3)

Commented by mnjuly1970 last updated on 23/Oct/21

  thanks alot...

thanksalot...

Commented by mnjuly1970 last updated on 23/Oct/21

  please recheck the answer

pleaserechecktheanswer

Terms of Service

Privacy Policy

Contact: info@tinkutara.com