All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 157469 by mnjuly1970 last updated on 23/Oct/21
calculate:Ω:=∫01ln(1+x).ln(1−x)1+xdx=?
Answered by qaz last updated on 23/Oct/21
∫01ln(1+x)ln(1−x)1+xdx=∫12lnxln(2−x)xdx=∫1/21(ln2+lnx)(ln2+ln(1−x))xdx=∫1/21ln22+ln2(lnx+ln(1−x))+lnxln(1−x)xdx=ln32+ln2⋅(−12ln22+∫1/21ln(1−x)xdx)+∫1/21lnxln(1−x)xdx=12ln32+ln2(Li2(12)−Li2(1))−lnx⋅Li2(x)∣1/21+Li3(1)−Li3(12)=12ln32−π26ln2−ln2⋅Li2(12)−ln2⋅Li2(12)+ζ(3)−Li3(12)=−π24ln2+43ln32+18ζ(3)−−−−−−−−−−−−−−−−−Li2(12)=−12ln22+π212Li3(12)=−π212ln2+16ln32+78ζ(3)
Commented by mnjuly1970 last updated on 23/Oct/21
thanksalot...
pleaserechecktheanswer
Terms of Service
Privacy Policy
Contact: info@tinkutara.com