Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40887 by prof Abdo imad last updated on 28/Jul/18

calculate  ∫_0 ^1  ((tln(t))/(t^2 −1))dt

calculate01tln(t)t21dt

Commented by prof Abdo imad last updated on 30/Jul/18

let I = ∫_0 ^1 ((tln(t))/(t^2 −1))dt   I =−∫_0 ^1 tln(t)(Σ_(n=0) ^∞  t^(2n) )dt  =−Σ_(n=0) ^∞  ∫_0 ^1 t^(2n+1) ln(t)dt  by parts  A_n =∫_0 ^1  t^(2n+1) ln(t)dt =[(1/(2n+2))t^(2n+2) ln(t)]_0 ^1   −∫_0 ^1  (1/(2n+2)) t^(2n+1) dt =−(1/((2n+2)^2 )) ⇒  I =Σ_(n=0) ^∞   (1/((2n+2)^2 )) =(1/4) Σ_(n=0) ^∞  (1/((n+1)^2 ))  =(1/4)Σ_(n=1) ^∞  (1/n^2 ) =(1/4) .(π^2 /6) ⇒ I =(π^2 /(24))

letI=01tln(t)t21dtI=01tln(t)(n=0t2n)dt=n=001t2n+1ln(t)dtbypartsAn=01t2n+1ln(t)dt=[12n+2t2n+2ln(t)]010112n+2t2n+1dt=1(2n+2)2I=n=01(2n+2)2=14n=01(n+1)2=14n=11n2=14.π26I=π224

Terms of Service

Privacy Policy

Contact: info@tinkutara.com