All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 38199 by prof Abdo imad last updated on 22/Jun/18
calculate∫01x1+x2dx.
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Jun/18
x=t2dx=2tdt∫012t21+t4dt∫012t2+1t2dt∫011−1t2(t+1t)2−2+∫011+1t2(t−1t)2+2∫01d(t+1t)(t+1t)2−2+∫01d(t−1t)(t−1t)2+2122{ln∣(t+1t)−2(t+1t)+2∣+12tan−1(t−1t2)}01=
Terms of Service
Privacy Policy
Contact: info@tinkutara.com