Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66326 by mathmax by abdo last updated on 12/Aug/19

calculate ∫_0 ^1    ((x^4  +1)/(x^6 +1))dx

calculate01x4+1x6+1dx

Commented by Prithwish sen last updated on 13/Aug/19

((x^4 +1)/(x^6 +1)) = (A/(x^2 +1)) + (B/(x^2 +(√3)x+1)) +(C/(x^2 −(√3)x+1))  x^4 +1= x^4 (A+B+C)+x^3 ((√3)C−(√3)B)+x^2 (2B+2C−A)+x((√3)C−(√3)B)+(A+B+C)  ⇒A+B+C = 1  (√3)C−(√3)B=0  2B+2C−A=0  A+B+C=0  A=(2/3) B=(1/6) C=(1/6)  ∫((2dx)/(3(1+x^2 ))) +(1/6)∫(dx/((x+((√3)/2))^2 +((1/2))^2 )) +(1/6) ∫(dx/((x−((√3)/2))^2 +((1/2))^2 ))

x4+1x6+1=Ax2+1+Bx2+3x+1+Cx23x+1x4+1=x4(A+B+C)+x3(3C3B)+x2(2B+2CA)+x(3C3B)+(A+B+C)A+B+C=13C3B=02B+2CA=0A+B+C=0A=23B=16C=162dx3(1+x2)+16dx(x+32)2+(12)2+16dx(x32)2+(12)2

Commented by mathmax by abdo last updated on 13/Aug/19

thank you sir.

thankyousir.

Commented by Prithwish sen last updated on 13/Aug/19

welome

welome

Commented by mathmax by abdo last updated on 13/Aug/19

∫_0 ^(+∞)  ((x^4  +1)/(x^6 +1))dx =∫_0 ^1   ((x^4  +1)/(x^6  +1))dx +∫_1 ^(+∞)   ((x^4  +1)/(x^6  +1))dx but  ∫_1 ^(+∞)  ((x^4  +1)/(x^6  +1))dx =_(x=(1/t))    −∫_0 ^1   (((1/t^4 )+1)/((1/t^6 )+1))(−(dt/t^2 )) =∫_0 ^1  ((1+t^4 )/(1+t^6 ))dt ⇒  ∫_0 ^∞   ((x^4  +1)/(x^6  +1))dx =2 ∫_0 ^1  ((x^4  +1)/(x^6  +1))dx ⇒∫_0 ^1  ((x^4  +1)/(x^6  +1))dx=(1/2)∫_0 ^∞  (x^4 /(1+x^6 ))dx +(1/2)∫_0 ^∞  (dx/(1+x^6 ))  changement x =t^(1/6)   give ∫_0 ^∞   (x^4 /(1+x^6 ))dx =∫_0 ^∞  (t^(2/3) /(1+t))(1/6)t^((1/6)−1) dt  =(1/6)∫_0 ^∞   (t^((2/3)+(1/6)−1) /(1+t))dt =(1/6)∫_0 ^∞   (t^((5/6)−1) /(1+t))dt =(1/6)(π/(sin(((5π)/6)))) =(π/6)×2=(π/3)  ∫_0 ^∞  (dx/(1+x^6 )) =_(x=t^(1/6) )     (1/6)∫_0 ^∞     (t^((1/6)−1) /(1+t))dt=(1/6)(π/(sin((π/6)))) =(π/6)×2 =(π/3) ⇒  ∫_0 ^1   ((x^4  +1)/(x^6  +1))dx =(π/6)+(π/6) =(π/3)

0+x4+1x6+1dx=01x4+1x6+1dx+1+x4+1x6+1dxbut1+x4+1x6+1dx=x=1t011t4+11t6+1(dtt2)=011+t41+t6dt0x4+1x6+1dx=201x4+1x6+1dx01x4+1x6+1dx=120x41+x6dx+120dx1+x6changementx=t16give0x41+x6dx=0t231+t16t161dt=160t23+1611+tdt=160t5611+tdt=16πsin(5π6)=π6×2=π30dx1+x6=x=t16160t1611+tdt=16πsin(π6)=π6×2=π301x4+1x6+1dx=π6+π6=π3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com