Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40147 by maxmathsup by imad last updated on 16/Jul/18

calculate  ∫_0 ^2   (√(x^3 (2−x)))dx

calculate02x3(2x)dx

Commented by math khazana by abdo last updated on 17/Jul/18

let  I = ∫_0 ^2 (√(x^3 (2−x)))dx  I =∫_0 ^2  x(√(x(2−x)))     changement x=2sin^2 θ give  I  = ∫_0 ^(π/2)  2 sin^2 θ(√(2sin^2 θ(2−2sin^2 θ))) 4 sinθ cosθdθ  =16∫_0 ^(π/2)  sin^2 θ sinθ cosθ sinθ cosθ dθ  =16 ∫_0 ^(π/2)   sin^4 θ cos^2 θdθdθ  by parts  ∫_0 ^(π/2)  cosθ( cosθ sin^4 θ)dθ  =[(1/5) sin^5 θ cosθ]_0 ^(π/2)   +∫_0 ^(π/2)   (1/5) sin^5 θ sinθ dθ  =(1/5) ∫_0 ^(π/2)   (sin^2 θ)^3  dθ  =(1/5)  ∫_0 ^(π/2)  {((1−cos(2θ))/2)}^3 dθ  =(1/(40)) ∫_0 ^(π/2)  {Σ_(k=0) ^3  C_3 ^k  (−1)^k (cos(2θ))^k }dθ  =(1/(40)) ∫_0 ^(π/2)   {1 −3cos(2θ) +3cos^2 (2θ) −cos^3 (2θ)}dθ  =(π/(80)) −(3/(40)) ∫_0 ^(π/2)  cos(2θ)dθ  +(3/(40)) ∫_0 ^(π/2)  ((1+cos(4θ))/2)dθ  −(1/(40)) ∫_0 ^(π/2)   cos(2θ)((1+cos(4θ))/2) dθ  =(π/(80)) +(3/(160)) −(1/(80)) ∫_0 ^(π/2)  (1+cos(4θ))cos(2θ)  ....be continued...

letI=02x3(2x)dxI=02xx(2x)changementx=2sin2θgiveI=0π22sin2θ2sin2θ(22sin2θ)4sinθcosθdθ=160π2sin2θsinθcosθsinθcosθdθ=160π2sin4θcos2θdθdθbyparts0π2cosθ(cosθsin4θ)dθ=[15sin5θcosθ]0π2+0π215sin5θsinθdθ=150π2(sin2θ)3dθ=150π2{1cos(2θ)2}3dθ=1400π2{k=03C3k(1)k(cos(2θ))k}dθ=1400π2{13cos(2θ)+3cos2(2θ)cos3(2θ)}dθ=π803400π2cos(2θ)dθ+3400π21+cos(4θ)2dθ1400π2cos(2θ)1+cos(4θ)2dθ=π80+31601800π2(1+cos(4θ))cos(2θ)....becontinued...

Commented by math khazana by abdo last updated on 25/Jul/18

∫_0 ^(π/2) {1+cos(4θ)}cos(2θ)dθ  =∫_0 ^(π/2)  cos(2θ)dθ +∫_0 ^(π/2) cos(2θ)cos(4θ)dθ  =0  +(1/2) ∫_0 ^(π/2)  {cos(6θ) +cos(2θ)}dθ =0 ⇒  I =16{ ((3π)/(160))} ⇒ I  =((3π)/(10)) .

0π2{1+cos(4θ)}cos(2θ)dθ=0π2cos(2θ)dθ+0π2cos(2θ)cos(4θ)dθ=0+120π2{cos(6θ)+cos(2θ)}dθ=0I=16{3π160}I=3π10.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com