All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 40147 by maxmathsup by imad last updated on 16/Jul/18
calculate∫02x3(2−x)dx
Commented by math khazana by abdo last updated on 17/Jul/18
letI=∫02x3(2−x)dxI=∫02xx(2−x)changementx=2sin2θgiveI=∫0π22sin2θ2sin2θ(2−2sin2θ)4sinθcosθdθ=16∫0π2sin2θsinθcosθsinθcosθdθ=16∫0π2sin4θcos2θdθdθbyparts∫0π2cosθ(cosθsin4θ)dθ=[15sin5θcosθ]0π2+∫0π215sin5θsinθdθ=15∫0π2(sin2θ)3dθ=15∫0π2{1−cos(2θ)2}3dθ=140∫0π2{∑k=03C3k(−1)k(cos(2θ))k}dθ=140∫0π2{1−3cos(2θ)+3cos2(2θ)−cos3(2θ)}dθ=π80−340∫0π2cos(2θ)dθ+340∫0π21+cos(4θ)2dθ−140∫0π2cos(2θ)1+cos(4θ)2dθ=π80+3160−180∫0π2(1+cos(4θ))cos(2θ)....becontinued...
Commented by math khazana by abdo last updated on 25/Jul/18
∫0π2{1+cos(4θ)}cos(2θ)dθ=∫0π2cos(2θ)dθ+∫0π2cos(2θ)cos(4θ)dθ=0+12∫0π2{cos(6θ)+cos(2θ)}dθ=0⇒I=16{3π160}⇒I=3π10.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com