All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 93265 by abdomathmax last updated on 12/May/20
calculate∫02π3dx3+sin(3x)
Commented by mathmax by abdo last updated on 12/May/20
A=∫02π3dx3+sin(3x)⇒A=3x=t13∫02πdt3+sint=eit=z13∫∣z∣=113+z−z−12i×dziz3A=∫∣z∣=12idziz(6i+z−z−1)=∫∣z∣=12dz6iz+z2−1letφ(z)=2z2+6iz−1polesofφ?z2+6iz−1=0→Δ′=(3i)2+1=−8⇒z1=−3i+2i2z2=−3i−2i2wehave∣z1∣−1=∣3−2∣−1=3−2−1=2−2>0∣z2∣−1=3+2−1=2+2>0⇒Res(φ,z1)=Res(φ,z2)=0⇒ΣRes=0⇒A=0
Answered by niroj last updated on 12/May/20
∫02π3dx3+sin(3x)Put,3x=t3dx=dtdx=13dtIFx=2π3⇒t=2πIFx=0⇒t=013∫02π13+sintdt=[13∫13+2tant21+tan2t2dt]02π=[13∫sec2t23+3tan2t2+2tant2dt]02πPut,tant2=msec2t2dt=2dm[13∫2dm3+3m2+2m]02π=[23∫13(m2+23m+1)dm]02π=[29∫1(m)2+2.13.m+19−19+1dm]02π=[29∫1(m+13)2−(89)dm]02π=[29∫1(m+13)2−(83)2dm]02π=[29.12.83logm+13+83m+13−83]02π=[138log3m+1+83m+1−8]02π=[138log3tant2+1+83tant2+1−8]02π={138log3tan2π2+1+83tan2π2+1−8}−{138log3.0+1+83.0+1−8}=138log1+81−8−138log1+81−8=0//.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com