All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 64649 by mathmax by abdo last updated on 20/Jul/19
calculate∫02πcosθ5+3cosθdθ
Commented by mathmax by abdo last updated on 20/Jul/19
letA=∫02πcosθ5+3cosθ⇒A=13∫02π3cosθ+5−53cosθ+5dθ=2π3−53∫02πdθ3cosθ+5changementeiθ=zgive∫02πdθ3cosθ+5=∫∣z∣=113z+z−12+5dziz=∫∣z∣=12dziz(3z+3z−1+10)=∫∣z∣=1−2i3z2+3+10zdzletW(z)=−2i3z2+10z+3polesofW?Δ′=52−9=16⇒z1=−5+43=−13andz2=−5−43=−3⇒W(z)=−2i3(z−z1)(z−z2)(z2isoutofcircle)residustheoremgive∫∣z∣=1W(z)dz=2iπRes(W,z1)Res(W,z1)=limz→z1(z−z1)W(z)=−2i3(z1−z2)=−2i3(−13+3)=−2i3.83=−i4⇒∫∣z∣=1W(z)dz=2iπ(−i4)=π2⇒A=2π3−53π2=2π3−5π6=4π−5π6⇒A=−π6.
Answered by MJS last updated on 20/Jul/19
∫2π0cosθ5+3cosθdθ=2∫π0cosθ5+3cosθdθ=[t=tanθ2→dθ=2cos2θ2dt]−2∫∞0t2−1(t2+1)(t2+4)dt=43∫∞0dtt2+1−103∫∞0dtt2+4==[43arctant−53arctant2]0∞=−π6
thankyousir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com