Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64649 by mathmax by abdo last updated on 20/Jul/19

calculate ∫_0 ^(2π)   ((cosθ)/(5+3cosθ))dθ

calculate02πcosθ5+3cosθdθ

Commented by mathmax by abdo last updated on 20/Jul/19

let A =∫_0 ^(2π)    ((cosθ)/(5+3cosθ)) ⇒A =(1/3) ∫_0 ^(2π)   ((3cosθ +5−5)/(3cosθ +5))dθ  =((2π)/3) −(5/3) ∫_0 ^(2π)   (dθ/(3cosθ +5))  changement e^(iθ) =z give  ∫_0 ^(2π)   (dθ/(3cosθ +5)) =∫_(∣z∣=1)      (1/(3 ((z+z^(−1) )/2)+5)) (dz/(iz))  = ∫_(∣z∣=1)   ((2dz)/(iz(3z+3z^(−1)  +10))) =∫_(∣z∣=1)    ((−2i)/(3z^2  +3 +10z))dz let  W(z) =((−2i)/(3z^2  +10z +3))  poles of W?  Δ^′ =5^2 −9 =16 ⇒z_1 =((−5 +4)/3) =−(1/3)  and z_2 =((−5−4)/3) =−3 ⇒  W(z) =((−2i)/(3(z−z_1 )(z−z_2 )))     (z_2 is out of circle) residus theorem give  ∫_(∣z∣=1) W(z)dz =2iπ Res(W,z_1 )  Res(W,z_1 ) =lim_(z→z_1 ) (z−z_1 )W(z) =((−2i)/(3(z_1 −z_2 ))) =((−2i)/(3(−(1/3)+3)))  =((−2i)/(3.(8/3))) =−(i/4) ⇒∫_(∣z∣=1) W(z)dz =2iπ(−(i/4)) =(π/2) ⇒  A =((2π)/3) −(5/3) (π/2) =((2π)/3)−((5π)/6) =((4π−5π)/6) ⇒ A =−(π/6) .

letA=02πcosθ5+3cosθA=1302π3cosθ+553cosθ+5dθ=2π35302πdθ3cosθ+5changementeiθ=zgive02πdθ3cosθ+5=z∣=113z+z12+5dziz=z∣=12dziz(3z+3z1+10)=z∣=12i3z2+3+10zdzletW(z)=2i3z2+10z+3polesofW?Δ=529=16z1=5+43=13andz2=543=3W(z)=2i3(zz1)(zz2)(z2isoutofcircle)residustheoremgivez∣=1W(z)dz=2iπRes(W,z1)Res(W,z1)=limzz1(zz1)W(z)=2i3(z1z2)=2i3(13+3)=2i3.83=i4z∣=1W(z)dz=2iπ(i4)=π2A=2π353π2=2π35π6=4π5π6A=π6.

Answered by MJS last updated on 20/Jul/19

∫_0 ^(2π) ((cos θ)/(5+3cos θ))dθ=2∫_0 ^π ((cos θ)/(5+3cos θ))dθ=       [t=tan (θ/2) → dθ=2cos^2  (θ/2) dt]  −2∫_0 ^∞ ((t^2 −1)/((t^2 +1)(t^2 +4)))dt=(4/3)∫_0 ^∞ (dt/(t^2 +1))−((10)/3)∫_0 ^∞ (dt/(t^2 +4))=  =[(4/3)arctan t −(5/3)arctan (t/2)]_0 ^∞ =−(π/6)

2π0cosθ5+3cosθdθ=2π0cosθ5+3cosθdθ=[t=tanθ2dθ=2cos2θ2dt]20t21(t2+1)(t2+4)dt=430dtt2+11030dtt2+4==[43arctant53arctant2]0=π6

Commented by mathmax by abdo last updated on 20/Jul/19

thank you sir.

thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com