Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36200 by prof Abdo imad last updated on 30/May/18

calculate  ∫_0 ^(2π)     (dθ/((2+cosθ)^2 ))

calculate02πdθ(2+cosθ)2

Commented by prof Abdo imad last updated on 31/May/18

letut  I = ∫_0 ^(2π)    (dθ/((2+cosθ)^2 ))  I = ∫_0 ^π    (dθ/((2 +cosθ)^2 ))  + ∫_π ^(2π)    (dθ/((2+cosθ)^2 )) =I_1  + I_2   changement tan((θ/2))=t give  I_1  = ∫_0 ^∞      (1/((2 + ((1−t^2 )/(1+t^2 )))^2 )) ((2dt)/(1+t^2 ))  = 2 ∫_0 ^∞        (dt/((1+t^2 )(((2 +2t^2  +1−t^2 )/(1+t^2 )))^2 ))  = 2 ∫_0 ^∞      (((1+t^2 )^2 )/((1+t^2 )( 3+t^2 )^2 ))dt  = 2 ∫_0 ^∞     ((t^2  +1)/(( t^2  +3)^2 ))dt =∫_(−∞) ^(+∞)   ((t^2  +1)/((t^2  +3)^2 ))dt let  consider the complex function  ϕ(z) = ((z^2  +1)/((z^2 +3)^2 ))  ϕ(z) = ((z^2  +1)/((z−i(√3))^2 (z +i(√3))^2 )) the poles of ϕ are  i(√3)  and −i(√3)(doubles) Residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i(√3))  Res(ϕ,i(√3)) =lim_(z→i(√3))   (1/((2−1)!)){ (z−i(√3))^2 ϕ(z)}^((1))   =lim_(z→i(√3))   { ((z^2  +1)/((z +i(√3))^2 ))}^((1))   lim_(z→i(√3) )  { ((2z(z +i(√3))^2  −(z^2  +1)2(z+i(√3)))/((z +i(√3))^4 ))}  =lim_(z→i(√3))   {  ((2z(z +i(√3)) −2(z^2  +1))/((z +i(√3))^3 ))}  =lim_(z→i(√3))   { ((2z^2   + 2iz (√3) −2z^2  −2)/((z+i(√3))^3 ))}  = ((2i(i(√3))(√3) −2)/((2i(√3))^3 )) = ((−8)/(−8i3(√3))) = (1/(i3(√3)))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ (1/(i3(√3))) = ((2π)/(3(√3))) = I_1

letutI=02πdθ(2+cosθ)2I=0πdθ(2+cosθ)2+π2πdθ(2+cosθ)2=I1+I2changementtan(θ2)=tgiveI1=01(2+1t21+t2)22dt1+t2=20dt(1+t2)(2+2t2+1t21+t2)2=20(1+t2)2(1+t2)(3+t2)2dt=20t2+1(t2+3)2dt=+t2+1(t2+3)2dtletconsiderthecomplexfunctionφ(z)=z2+1(z2+3)2φ(z)=z2+1(zi3)2(z+i3)2thepolesofφarei3andi3(doubles)Residustheoremgive+φ(z)dz=2iπRes(φ,i3)Res(φ,i3)=limzi31(21)!{(zi3)2φ(z)}(1)=limzi3{z2+1(z+i3)2}(1)limzi3{2z(z+i3)2(z2+1)2(z+i3)(z+i3)4}=limzi3{2z(z+i3)2(z2+1)(z+i3)3}=limzi3{2z2+2iz32z22(z+i3)3}=2i(i3)32(2i3)3=88i33=1i33+φ(z)dz=2iπ1i33=2π33=I1

Commented by abdo.msup.com last updated on 31/May/18

I_2 =∫_π ^(2π)   (dθ/((2+cosθ)^2 ))  =_(θ =π+t)  ∫_0 ^π     (dt/((2−cost)^2 ))  =_(tan((t/2))=x)  ∫_0 ^(+∞)      (1/((2−((1−x^2 )/(1+x^2 )))^2 )) ((2dx)/(1+x^2 ))  = 2∫_0 ^(+∞)    (dx/((1+x^2 ){((2+2x^2  −1+x^2 )/(1+x^2 ))}^2 ))  = ∫_(−∞) ^(+∞)      ((1+x^2 )/((3x^2  +1)^2 ))dx  let consider  the complex function  ϕ(z) = ((z^2  +1)/((3z^2  +1)^2 ))  ϕ(z) = ((z^2  +1)/(9( z −(i/(√3)))(z+(i/(√3))))) the poles of  ϕ are (i/(√3))  and ((−i)/(√3))(double)  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ Res(ϕ,(i/(√3)))  Res(ϕ,(i/(√3)))=lim_(z→(i/(√3)))  (1/((2−1)!)){ (z−(i/(√3)))ϕ(z)}^((1))   ...be continued...

I2=π2πdθ(2+cosθ)2=θ=π+t0πdt(2cost)2=tan(t2)=x0+1(21x21+x2)22dx1+x2=20+dx(1+x2){2+2x21+x21+x2}2=+1+x2(3x2+1)2dxletconsiderthecomplexfunctionφ(z)=z2+1(3z2+1)2φ(z)=z2+19(zi3)(z+i3)thepolesofφarei3andi3(double)+φ(z)dz=2iπRes(φ,i3)Res(φ,i3)=limzi31(21)!{(zi3)φ(z)}(1)...becontinued...

Commented by prof Abdo imad last updated on 01/Jun/18

Res(ϕ,(i/(√3))) =lim_(z→(i/(√3)))   {  ((z^2  +1)/(9(z +(i/(√3)))^2 ))}^((1))   =(1/9){ ((2z(z+(i/(√3)))^2  −(z^2  +1)2(z +(i/(√3))))/((z +(i/(√3)))^4 ))}  =lim_(z→(i/(√3))) (1/9){ ((2z(z +(i/(√3))) −2(z^2  +1))/((z +(i/(√3)))^3 ))}  =lim_(z→(i/(√3))) (1/9){ (((2/(√3))iz −2)/((z +(i/(√3)))^3 ))}  = (2/9) ((((i/(√3))(i/(√3)) −1)/((((2i)/(√3)))^3 )))= (2/9)  (4/(3 (8/(3(√3)))i)) =  ((√3)/(9i))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ ((√3)/(9i)) = ((2π(√3))/9) =I_2   I = I_1  +I_2

Res(φ,i3)=limzi3{z2+19(z+i3)2}(1)=19{2z(z+i3)2(z2+1)2(z+i3)(z+i3)4}=limzi319{2z(z+i3)2(z2+1)(z+i3)3}=limzi319{23iz2(z+i3)3}=29(i3i31(2i3)3)=2943833i=39i+φ(z)dz=2iπ39i=2π39=I2I=I1+I2

Commented by prof Abdo imad last updated on 01/Jun/18

I = ((2π)/(3(√3)))  + ((2π(√3))/9) = ((2π(√3))/9) +((2π(√3))/9) ⇒  I = ((4π(√3))/9) .

I=2π33+2π39=2π39+2π39I=4π39.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com