Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 68038 by mathmax by abdo last updated on 03/Sep/19

calculate ∫_0 ^∞   ((arctan(x^2 −1))/(x^2  +4))dx

calculate0arctan(x21)x2+4dx

Commented by mathmax by abdo last updated on 07/Sep/19

let f(t) =∫_0 ^∞  ((arctan(x^2 −t))/(x^2  +4)) dx⇒f(1) =∫_0 ^∞   ((arctan(x^2 −1))/(x^2  +4))dx  f^′ (t) =∫_0 ^∞   (1/((x^2  +4)(1+(x^2 −t)^2 )))dx  =∫_0 ^∞   (dx/((x^2  +4)(x^4 −2tx^2  +t^2  +1))) ⇒2f^′ (t) =∫_(−∞) ^(+∞ )  (dx/((x^2  +4)(x^4 −2tx^(2 ) +t^2  +1)))  let W(z) =(1/((z^2  +4)(z^4 −2tz^2  +t^(2 ) +1)))  poles of W?  z^2  +4 =0 ⇒z =+^− 2i  z^4 −2tz^2  +t^2  +1 =0 ⇒u^2 −2tu +t^(2 ) +1 =0 with u=z^2   Δ^′ =t^2 −(t^2 +1) =−1 ⇒u_1 =t+i  and u_2 =t−i ⇒  u_1 =(√(1+t^2 )) e^(iarctan((1/t)))   and u_2 =(√(1+t^2 )) e^(−iarctan((1/t)))   z^2 =u_1 ⇒z =+^− (1+t^2 )^(1/4)  e^((i/2)arctan((1/t)))   z^2 =u_2  ⇒z =+^− (1+t^2 )^(−(i/2)arctan((1/(t ))))  ⇒  W(z) =(1/((z−2i)(z+2i)(z−(1+t^2 )^(1/4) e^((i/2)arctan((1/t))) (z+(1+t^2 )^(1/4) e^((i/2)arctan((1/t))) )(z−(1+t^2 )^(1/4) e^(−(i/2)arctan((1/t))) )(z+(1+t^2 )e^(−(i/2)arctan((1/t))) )))  residustheorem ⇒  ∫_(−∞) ^(+∞)  W(z)dz =2iπ{ Res(W,2i) +Res(W,(1+t^2 )^(1/4)  e^((i/2)arctan((1/t)))   +Res(W,−(1+t^2 )^(1/4)  e^(−(i/2)afctan((1/t))) }...be continued...

letf(t)=0arctan(x2t)x2+4dxf(1)=0arctan(x21)x2+4dxf(t)=01(x2+4)(1+(x2t)2)dx=0dx(x2+4)(x42tx2+t2+1)2f(t)=+dx(x2+4)(x42tx2+t2+1)letW(z)=1(z2+4)(z42tz2+t2+1)polesofW?z2+4=0z=+2iz42tz2+t2+1=0u22tu+t2+1=0withu=z2Δ=t2(t2+1)=1u1=t+iandu2=tiu1=1+t2eiarctan(1t)andu2=1+t2eiarctan(1t)z2=u1z=+(1+t2)14ei2arctan(1t)z2=u2z=+(1+t2)i2arctan(1t)W(z)=1(z2i)(z+2i)(z(1+t2)14ei2arctan(1t)(z+(1+t2)14ei2arctan(1t))(z(1+t2)14ei2arctan(1t))(z+(1+t2)ei2arctan(1t))residustheorem+W(z)dz=2iπ{Res(W,2i)+Res(W,(1+t2)14ei2arctan(1t)+Res(W,(1+t2)14ei2afctan(1t)}...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com