Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 74349 by mathmax by abdo last updated on 22/Nov/19

calculate ∫_0 ^∞  ((cos(2πx))/((x^2 +3)^2 ))dx

calculate0cos(2πx)(x2+3)2dx

Commented by abdomathmax last updated on 23/Nov/19

let I =∫_0 ^∞   ((cos(2πx))/((x^2 +3)^2 ))dx  changement x=(√3)t give  I =∫_0 ^∞     ((cos(2π(√3)t))/(9(t^2 +1)^2 ))×(√3)dt =((√3)/9) ∫_0 ^∞   ((cos(2π(√3)t))/((t^2 +1)^2 ))dt  ⇒2I=((√3)/9) ∫_(−∞) ^(+∞)   ((cos(2π(√3)t))/((t^2 +1)^2 ))dt= ((√3)/9) Re(∫_(−∞) ^(+∞)  (e^(i(2π(√3))t) /((t^2 +1)^2 ))dx)  let W(z)=(e^(i(2π(√3))z) /((z^2 +1)^2 )) ⇒ W(z)=(e^(i(2π(√3))z) /((z−i)^2 (z+i)^2 ))  ∫_(−∞) ^(+∞)  W(z)dz =2iπ Res(W,i)  Res(W,i)= lim_(z→i)    (1/((2−1)!)){ (z−i)^2 W(z)}^((1))   =lim_(z→i)     {  (e^(i(2π(√3))z) /((z+i)^2 ))}^((1))   =lim_(z→i)     ((2iπ(√3)e^(i(2π(√3))z) (z+i)^2 −2(z+i)e^(2iπ(√3)z) )/((z+i)^4 ))  =lim_(z→i)     ((2iπ(√3)e^(i(2π(√3))z) (z+i)−2 e^(2iπ(√3)z) )/((z+i)^3 ))  =((2iπ(√3)e^(−2π(√3)) (2i)−2e^(−2π(√3)) )/(−8i))  =(((−4π(√3)−2)e^(−2π(√3)) )/(+8i)) =(((2π(√3)+1)e^(−2π(√3)) )/(4i)) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =(π/2)(2π(√3)+1)e^(−2π(√3))   ⇒  I=((√3)/(18))×(π/2)(2π(√3)+1)e^(−2π(√3))

letI=0cos(2πx)(x2+3)2dxchangementx=3tgiveI=0cos(2π3t)9(t2+1)2×3dt=390cos(2π3t)(t2+1)2dt2I=39+cos(2π3t)(t2+1)2dt=39Re(+ei(2π3)t(t2+1)2dx)letW(z)=ei(2π3)z(z2+1)2W(z)=ei(2π3)z(zi)2(z+i)2+W(z)dz=2iπRes(W,i)Res(W,i)=limzi1(21)!{(zi)2W(z)}(1)=limzi{ei(2π3)z(z+i)2}(1)=limzi2iπ3ei(2π3)z(z+i)22(z+i)e2iπ3z(z+i)4=limzi2iπ3ei(2π3)z(z+i)2e2iπ3z(z+i)3=2iπ3e2π3(2i)2e2π38i=(4π32)e2π3+8i=(2π3+1)e2π34i+W(z)dz=π2(2π3+1)e2π3I=318×π2(2π3+1)e2π3

Commented by abdomathmax last updated on 23/Nov/19

I =((π(√3))/(36))(2π(√3)+1) e^(−2π(√3))

I=π336(2π3+1)e2π3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com