All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 74349 by mathmax by abdo last updated on 22/Nov/19
calculate∫0∞cos(2πx)(x2+3)2dx
Commented by abdomathmax last updated on 23/Nov/19
letI=∫0∞cos(2πx)(x2+3)2dxchangementx=3tgiveI=∫0∞cos(2π3t)9(t2+1)2×3dt=39∫0∞cos(2π3t)(t2+1)2dt⇒2I=39∫−∞+∞cos(2π3t)(t2+1)2dt=39Re(∫−∞+∞ei(2π3)t(t2+1)2dx)letW(z)=ei(2π3)z(z2+1)2⇒W(z)=ei(2π3)z(z−i)2(z+i)2∫−∞+∞W(z)dz=2iπRes(W,i)Res(W,i)=limz→i1(2−1)!{(z−i)2W(z)}(1)=limz→i{ei(2π3)z(z+i)2}(1)=limz→i2iπ3ei(2π3)z(z+i)2−2(z+i)e2iπ3z(z+i)4=limz→i2iπ3ei(2π3)z(z+i)−2e2iπ3z(z+i)3=2iπ3e−2π3(2i)−2e−2π3−8i=(−4π3−2)e−2π3+8i=(2π3+1)e−2π34i⇒∫−∞+∞W(z)dz=π2(2π3+1)e−2π3⇒I=318×π2(2π3+1)e−2π3
I=π336(2π3+1)e−2π3
Terms of Service
Privacy Policy
Contact: info@tinkutara.com