Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 130387 by Bird last updated on 25/Jan/21

calculate ∫_0 ^∞  ((cos(abx))/((x^2 +ax+1)(x^2 +bx+1)))  with a and b real and ∣a∣<2,∣b∣<2

calculate0cos(abx)(x2+ax+1)(x2+bx+1)withaandbrealanda∣<2,b∣<2

Commented by mathmax by abdo last updated on 25/Jan/21

the q.is ∫_0 ^∞  ((cos(abx))/((x^2  +ax+1)(x^2  +bx+1)))dx

theq.is0cos(abx)(x2+ax+1)(x2+bx+1)dx

Commented by mathmax by abdo last updated on 25/Jan/21

I=∫_0 ^∞  ((cos(abx))/((x^2  +ax+1)(x^2  +bx+1)))dx ⇒  2I=∫_(−∞) ^(+∞)   ((cos(abx))/((x^2  +ax+1)(x^2  +bx+1)))dx =Re(∫_(−∞) ^(+∞)  (e^(iabx) /((x^2  +ax+1)(x^2  +bx+1)))dx)  let ϕ(z)=(e^(iabz) /((z^2 +az+1)(z^2 +bz +1))) poles ofϕ?  z^2 +az +1=0 →Δ=a^2 −4<0 ⇒z_1 =((−a+i(√(4−a^2 )))/2) and  z_2 =((−a−i(√(4−a^2 )))/2)  also the roots of x^2  +bx+1 are  t_1 =((−b+i(√(4−b^2 )))/2) and t_2 =((−b−i(√(4−b^2 )))/2) ⇒  ϕ(z)=(e^(iabz) /((z−z_1 )(z−z_2 )(z−t_1 )(z−t_2 ))) residus theorem give  ∫_R ϕ(z)dz =2iπ{Res(ϕ,z_1 )+Res(ϕ,t_1 )}  Res(ϕ,z_1 ) =(e^(iabz_1 ) /((z_1 −z_2 )(z_1 −t_1 )(z_1 −t_2 )))  =(e^(iabz_1 ) /(−i(√(4−a^2 ))(z_1 ^2  +bz_1 +1)))=....  Res(ϕ,z_2 )=(e^(iabz_2 ) /((z_2 −z_1 )(z_2 ^2  +bz_2 +1)))=....  rest to collect the results....

I=0cos(abx)(x2+ax+1)(x2+bx+1)dx2I=+cos(abx)(x2+ax+1)(x2+bx+1)dx=Re(+eiabx(x2+ax+1)(x2+bx+1)dx)letφ(z)=eiabz(z2+az+1)(z2+bz+1)polesofφ?z2+az+1=0Δ=a24<0z1=a+i4a22andz2=ai4a22alsotherootsofx2+bx+1aret1=b+i4b22andt2=bi4b22φ(z)=eiabz(zz1)(zz2)(zt1)(zt2)residustheoremgiveRφ(z)dz=2iπ{Res(φ,z1)+Res(φ,t1)}Res(φ,z1)=eiabz1(z1z2)(z1t1)(z1t2)=eiabz1i4a2(z12+bz1+1)=....Res(φ,z2)=eiabz2(z2z1)(z22+bz2+1)=....resttocollecttheresults....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com