All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 130387 by Bird last updated on 25/Jan/21
calculate∫0∞cos(abx)(x2+ax+1)(x2+bx+1)withaandbrealand∣a∣<2,∣b∣<2
Commented by mathmax by abdo last updated on 25/Jan/21
theq.is∫0∞cos(abx)(x2+ax+1)(x2+bx+1)dx
I=∫0∞cos(abx)(x2+ax+1)(x2+bx+1)dx⇒2I=∫−∞+∞cos(abx)(x2+ax+1)(x2+bx+1)dx=Re(∫−∞+∞eiabx(x2+ax+1)(x2+bx+1)dx)letφ(z)=eiabz(z2+az+1)(z2+bz+1)polesofφ?z2+az+1=0→Δ=a2−4<0⇒z1=−a+i4−a22andz2=−a−i4−a22alsotherootsofx2+bx+1aret1=−b+i4−b22andt2=−b−i4−b22⇒φ(z)=eiabz(z−z1)(z−z2)(z−t1)(z−t2)residustheoremgive∫Rφ(z)dz=2iπ{Res(φ,z1)+Res(φ,t1)}Res(φ,z1)=eiabz1(z1−z2)(z1−t1)(z1−t2)=eiabz1−i4−a2(z12+bz1+1)=....Res(φ,z2)=eiabz2(z2−z1)(z22+bz2+1)=....resttocollecttheresults....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com