All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 73333 by mathmax by abdo last updated on 10/Nov/19
calculate∫0∞cos(π+2x2)(x2+4)2dx
Commented by mathmax by abdo last updated on 11/Nov/19
letA=∫0∞cos(π+2x2)(x2+4)2dx⇒−2A=∫−∞+∞cos(2x2)(x2+4)2dx=x=2t∫−∞+∞cos(8t2)16(t2+1)2(2dt)=18∫−∞+∞cos(8t2)(t2+1)2dt⇒A=−116∫−∞+∞cos(8t2)(t2+1)2dt=−116Re(∫−∞+∞e8it2(t2+1)2dt)letφ(z)=e8iz2(z2+1)2⇒φ(z)=e8iz2(z−i)2(z+i)2∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(2−1)!{(z−i)2φ(z)}(1)=limz→i{ei8z2(z+i)2}(1)=limz→i16izei8z2(z+i)2−2(z+i)e8iz2(z+i)4=limz→i{16iz(z+i)−2}e8iz2(z+i)3=(−16(2i)−2}e−8i−8i=(16i+1)e−8i4i⇒∫−∞+∞φ(z)dz=2iπ×(16i+1)e−8i4i=π2(1+16i)(cos(8)−isin(8))=π2{cos(8)−isin(8)+16cos(8)i+16sin(8)}⇒A=−π32(cos(8)+16sin(8)}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com