All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 89714 by abdomathmax last updated on 18/Apr/20
calculate∫0∞dx(1+2+x2)2
Commented by mathmax by abdo last updated on 19/Apr/20
parametricmethodletf(t)=∫0∞dxt+2+x2witht>0f′(t)=−∫0∞dx(t+2+x2)2⇒∫0∞dx(t+2+x2)2=−f′(t)changementx=2sh(u)givef(t)=∫0∞2ch(u)dut+2ch(u)=2∫0∞eu+e−u2t+2×eu+e−u2du=2∫0∞eu+e−u2t+2eu+2e−udu=eu=z2∫1∞z+z−12t+2z+2z−1×dzz=2∫1+∞z+z−12tz+2z2+2dz=2∫1+∞z2+1z(2z2+2tz+2)dzdecopositionofg(z)=z2+1z(2z2+2tz+2)2z2+2tz+2=0→Δ′=t2−2<0ift<2z1=−t+i2−t22andz2=−t−i2−t22g(z)=z2+12z(z−z1)(z−z2)=az+bz−z1+cz−z2a=12z1z2=12,b=z12+12z12i2−t2=1+z122iz12−t2b=z22+12z2(−2i2−t2)=1+z22−2iz22−t2⇒∫1+∞g(z)dz=∫1+∞(az+bz−z1+cz−z2)dz=[aln∣z∣+bln∣z−z1∣+cln∣z−z2∣]1+∞resttosimplifybandcbecontinued...
Answered by MJS last updated on 18/Apr/20
∫dx(1+x2+2)2=[t=x+x2+22→dx=2(x2+2)x+x2+2dt]=2∫t2+1(t2+2t+1)2dt=[Ostrogradski]=2t+2t2+2t+1+22∫dtt2+2t+1==2t+2t2+2t+1+4arctan(2t+1)==x2+x+1−xx2+2x2+1+4arctan(x+1+x2+2)+C⇒∫∞0dx(1+x2+2)2=π2−1
Commented by turbo msup by abdo last updated on 18/Apr/20
thankyousir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com