Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 89714 by abdomathmax last updated on 18/Apr/20

calculate ∫_0 ^∞    (dx/((1+(√(2+x^2 )))^2 ))

calculate0dx(1+2+x2)2

Commented by mathmax by abdo last updated on 19/Apr/20

parametric method let f(t)=∫_0 ^∞   (dx/(t+(√(2+x^2 ))))  with t>0  f^′ (t)=−∫_0 ^∞   (dx/((t+(√(2+x^2 )))^2 )) ⇒∫_0 ^∞  (dx/((t+(√(2+x^2 )))^2 )) =−f^′ (t)   changement x =(√2)sh(u) give  f(t)=∫_0 ^∞   (((√2)ch(u)du)/(t +(√2)ch(u))) =(√2)∫_0 ^∞   (((e^u +e^(−u) )/2)/(t+(√2)×((e^u +e^(−u) )/2)))du  =(√2)∫_0 ^∞   ((e^u +e^(−u) )/(2t+(√2)e^u  +(√2)e^(−u) ))du =_(e^u =z)   (√2)∫_1 ^∞   ((z+z^(−1) )/(2t+(√2)z +(√2)z^(−1) ))×(dz/z)  =(√2)∫_1 ^(+∞)   ((z+z^(−1) )/(2tz +(√2)z^2  +(√2))) dz  =(√2)∫_1 ^(+∞)   ((z^2  +1)/(z((√2)z^2  +2tz +(√2))))dz decoposition of g(z)=((z^2  +1)/(z((√2)z^2  +2tz +(√2))))  (√2)z^2  +2tz +(√2)=0 →Δ^′ =t^2 −2<0  if t<(√2)  z_1 =((−t+i(√(2−t^2 )))/(√2))  and z_2 =((−t−i(√(2−t^2 )))/(√2))  g(z)=((z^2  +1)/((√2)z(z−z_1 )(z−z_2 ))) =(a/z) +(b/(z−z_1 )) +(c/(z−z_2 ))  a =(1/((√2)z_1 z_2 )) =(1/(√2))   ,b =((z_1 ^2  +1)/((√2)z_1 (√2)i(√(2−t^2 )))) =((1+z_1 ^2 )/(2iz_1 (√(2−t^2 ))))  b=((z_2 ^2  +1)/((√2)z_2 (−(√2)i(√(2−t^2 ))))) =((1+z_2 ^2 )/(−2iz_2 (√(2−t^2 )))) ⇒  ∫_1 ^(+∞) g(z)dz =∫_1 ^(+∞) ((a/z)+(b/(z−z_1 )) +(c/(z−z_2 )))dz  =[aln∣z∣ +bln∣z−z_1 ∣ +cln∣z−z_2 ∣]_1 ^(+∞)  rest to simplify b and c  be continued...

parametricmethodletf(t)=0dxt+2+x2witht>0f(t)=0dx(t+2+x2)20dx(t+2+x2)2=f(t)changementx=2sh(u)givef(t)=02ch(u)dut+2ch(u)=20eu+eu2t+2×eu+eu2du=20eu+eu2t+2eu+2eudu=eu=z21z+z12t+2z+2z1×dzz=21+z+z12tz+2z2+2dz=21+z2+1z(2z2+2tz+2)dzdecopositionofg(z)=z2+1z(2z2+2tz+2)2z2+2tz+2=0Δ=t22<0ift<2z1=t+i2t22andz2=ti2t22g(z)=z2+12z(zz1)(zz2)=az+bzz1+czz2a=12z1z2=12,b=z12+12z12i2t2=1+z122iz12t2b=z22+12z2(2i2t2)=1+z222iz22t21+g(z)dz=1+(az+bzz1+czz2)dz=[alnz+blnzz1+clnzz2]1+resttosimplifybandcbecontinued...

Answered by MJS last updated on 18/Apr/20

∫(dx/((1+(√(x^2 +2)))^2 ))=       [t=((x+(√(x^2 +2)))/(√2)) → dx=((√(2(x^2 +2)))/(x+(√(x^2 +2))))dt]  =(√2)∫((t^2 +1)/((t^2 +(√2)t+1)^2 ))dt=       [Ostrogradski]  =(((√2)t+2)/(t^2 +(√2)t+1))+2(√2)∫(dt/(t^2 +(√2)t+1))=  =(((√2)t+2)/(t^2 +(√2)t+1))+4arctan ((√2)t+1) =  =((x^2 +x+1−x(√(x^2 +2)))/(x^2 +1))+4arctan (x+1+(√(x^2 +2))) +C  ⇒  ∫_0 ^∞ (dx/((1+(√(x^2 +2)))^2 ))=(π/2)−1

dx(1+x2+2)2=[t=x+x2+22dx=2(x2+2)x+x2+2dt]=2t2+1(t2+2t+1)2dt=[Ostrogradski]=2t+2t2+2t+1+22dtt2+2t+1==2t+2t2+2t+1+4arctan(2t+1)==x2+x+1xx2+2x2+1+4arctan(x+1+x2+2)+C0dx(1+x2+2)2=π21

Commented by turbo msup by abdo last updated on 18/Apr/20

thank you sir.

thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com