Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 51324 by Abdo msup. last updated on 25/Dec/18

calculate ∫_0 ^(+∞)      (dx/(1+x^(2 )  +x^4 ))

calculate0+dx1+x2+x4

Answered by tanmay.chaudhury50@gmail.com last updated on 26/Dec/18

∫(dx/(x^4 +x^2 +1))  (1/2)∫((2/x^2 )/(x^2 +1+(1/x^2 )))  (1/2)∫(((1+(1/x^2 ))−(1−(1/x^2 )))/((x^2 +(1/x^2 )+1)))dx  (1/2)∫((d(x−(1/x)))/((x−(1/x))^2 +3))−(1/2)∫((d(x+(1/x)))/((x+(1/x))^2 −1))  (1/2)×(1/(√3))tan^(−1) (((x−(1/x))/(√3)))−(1/2)×(1/2)ln(((x+(1/x)−1)/(x+(1/x)+1)))+c_1   =(1/(2(√3)))×tan^(−1) (((x^2 −1)/(x(√3))))−(1/4)ln(((x^2 −x+1)/(x^2 +x+1)))+c_1   required answer  =∣(1/(2(√3)))tan^(−1) (((x^2 −1)/(x(√3))))−(1/4)ln(((1−(1/x)+(1/x^2 ))/(1+(1/x)+(1/x^2 ))))∣_0 ^∞   =∣(1/(2(√3)))tan^(−1) (((1−(1/x^2 ))/((√3)/x)))−do∣_0 ^∞   =(1/(2(√3)))[tan^(−1) (((1−0)/0))−tan^(−1) (((0^2 −1)/(0×(√3))))]−(1/4)[ln(((1−0+0)/(1+0+0)))−ln(((0^2 −0+1)/(0^2 +0+1)))]  =(1/(2(√3)))[tan(∞)−tan^(−1) (−∞)]−do  =(1/(2(√3)))[(π/2)−(((−π)/2))]  =(π/(2(√3)))

dxx4+x2+1122x2x2+1+1x212(1+1x2)(11x2)(x2+1x2+1)dx12d(x1x)(x1x)2+312d(x+1x)(x+1x)2112×13tan1(x1x3)12×12ln(x+1x1x+1x+1)+c1=123×tan1(x21x3)14ln(x2x+1x2+x+1)+c1requiredanswer=∣123tan1(x21x3)14ln(11x+1x21+1x+1x2)0=∣123tan1(11x23x)do0=123[tan1(100)tan1(0210×3)]14[ln(10+01+0+0)ln(020+102+0+1)]=123[tan()tan1()]do=123[π2(π2)]=π23

Commented by peter frank last updated on 26/Dec/18

nice work sir

niceworksir

Answered by Smail last updated on 26/Dec/18

(1/((x^2 +x+1)(x^2 −x+1)))=((ax+b)/(x^2 +x+1))+((cx+d)/(x^2 −x+1))  a=−c  ,  d=1−b  b=1−a  a=b=−c=d=(1/2)   A=∫_0 ^∞ (dx/(1+x^2 +x^4 ))=(1/2)∫_0 ^∞ ((x+1)/(x^2 +x+1))dx−(1/2)∫_0 ^∞ ((x−1)/(x^2 −x+1))dx  =(1/4)∫_0 ^∞ ((2x+1+1)/(x^2 +x+1))dx−(1/4)∫_0 ^∞ ((2x−1−1)/(x^2 −x+1))dx  =(1/4)[ln∣((x^2 +x+1)/(x^2 −x+1))∣]_0 ^∞ +(1/4)∫_0 ^∞ (dx/((x+(1/2))^2 +(3/4)))+(1/4)∫_0 ^∞ (dx/((x−(1/2))^2 +(3/4)))  =(1/3)∫_0 ^∞ (dx/((((2x+1)/(√3)))^2 +1))+(1/3)∫_0 ^∞ (dx/((((2x−1)/(√3)))^2 +1))  t=((2x+_− 1)/(√3))⇒dx=((√3)/2)dt  A=(1/(2(√3)))∫_(1/(√3)) ^∞ (dt/(t^2 +1))+(1/(2(√3)))∫_(−1/(√3)) ^∞ (dt/(t^2 +1))  =(1/(2(√3)))[tan^(−1) (t)]_(1/(√3)) ^∞ +(1/(2(√3)))[tan^(−1) (t)]_(−1/(√3)) ^∞   =(1/(2(√3)))((π/2)−tan^(−1) (((√3)/3)))+(1/(2(√3)))((π/2)+tan^(−1) (((√3)/3)))  =(π/(2(√3)))

1(x2+x+1)(x2x+1)=ax+bx2+x+1+cx+dx2x+1a=c,d=1bb=1aa=b=c=d=12A=0dx1+x2+x4=120x+1x2+x+1dx120x1x2x+1dx=1402x+1+1x2+x+1dx1402x11x2x+1dx=14[lnx2+x+1x2x+1]0+140dx(x+12)2+34+140dx(x12)2+34=130dx(2x+13)2+1+130dx(2x13)2+1t=2x+13dx=32dtA=1231/3dtt2+1+1231/3dtt2+1=123[tan1(t)]1/3+123[tan1(t)]1/3=123(π2tan1(33))+123(π2+tan1(33))=π23

Commented by peter frank last updated on 26/Dec/18

nice work sir

niceworksir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com