Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 74395 by mathmax by abdo last updated on 23/Nov/19

calculate ∫_0 ^∞    e^(−2x) [e^x ]dx

calculate0e2x[ex]dx

Commented by ~blr237~ last updated on 23/Nov/19

let it be I  I=∫_0 ^∞ e^(−2x) [e^x ] e^(−x) d(e^x )=∫_1 ^∞ (([u])/u^3 )du  I=Σ_(k=1) ^∞ ∫_k ^(k+1) (([u])/u^3 )du=Σ_(k=1) ^∞ [((−k)/(2u^2 ))]_k ^(k+1)   I=Σ_(k=1) ^∞  [(1/(2k))−(k/(2(k+1)^2 ))]=Σ_(k=1) ^∞ [(1/(2k))−(1/(2(k+1)))+(1/((k+1)^2 ))]  I=(1/2)J+Σ_(k=1) ^∞ (1/((k+1)^2 ))   with   J=Σ_(k=1) ^∞ ((1/k)−(1/(k+1)))=1  I=(1/2)+(π^2 /6)−1=((π^2 −3)/6)

letitbeII=0e2x[ex]exd(ex)=1[u]u3duI=k=1kk+1[u]u3du=k=1[k2u2]kk+1I=k=1[12kk2(k+1)2]=k=1[12k12(k+1)+1(k+1)2]I=12J+k=11(k+1)2withJ=k=1(1k1k+1)=1I=12+π261=π236

Commented by abdomathmax last updated on 24/Nov/19

let I =∫_0 ^∞  e^(−2x) [e^x ]dx vhangement e^x =t give  I =∫_1 ^(+∞)  e^(−2lnt) [t](dt/t) =∫_1 ^(+∞)  (([t])/t^3 )dt  =Σ_(n=1) ^∞  ∫_n ^(n+1) (n/t^3 )dt =Σ_(n=1) ^∞ n ∫_n ^(n+1)  t^(−3) dt  =Σ_(n=1) ^∞  n[(1/(−2))t^(−2) ]_n ^(n+1)  =−Σ_(n=1) ^∞ (n/2){(n+1)^(−2) −n^(−2) }  =Σ_(n=1) ^∞  (n/2){(1/n^2 )−(1/((n+1)^2 ))}  =(1/2)Σ_(n=1) ^∞ ((1/n) −(n/((n+1)^2 )))  =(1/2)Σ_(n=1) ^∞ {(1/n)−((n+1−1)/((n+1)^2 ))}  =(1/2)Σ_(n=1) ^∞ (1/n)−(1/2)Σ_(n=1) ^∞ (1/((n+1))) +(1/2)Σ_(n=1) ^∞  (1/((n+1)^2 ))  =(1/2)Σ_(n=1) ^∞  (1/n)−(1/2)Σ_(n=2) ^∞  (1/n) +(1/2)Σ_(n=2) ^∞  (1/n^2 )  =(1/2) +(1/2)(Σ_(n=1) ^∞  (1/n^2 )−1) =(1/2)×(π^2 /6) =(π^2 /(12))

letI=0e2x[ex]dxvhangementex=tgiveI=1+e2lnt[t]dtt=1+[t]t3dt=n=1nn+1nt3dt=n=1nnn+1t3dt=n=1n[12t2]nn+1=n=1n2{(n+1)2n2}=n=1n2{1n21(n+1)2}=12n=1(1nn(n+1)2)=12n=1{1nn+11(n+1)2}=12n=11n12n=11(n+1)+12n=11(n+1)2=12n=11n12n=21n+12n=21n2=12+12(n=11n21)=12×π26=π212

Terms of Service

Privacy Policy

Contact: info@tinkutara.com