All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 74395 by mathmax by abdo last updated on 23/Nov/19
calculate∫0∞e−2x[ex]dx
Commented by ~blr237~ last updated on 23/Nov/19
letitbeII=∫0∞e−2x[ex]e−xd(ex)=∫1∞[u]u3duI=∑∞k=1∫kk+1[u]u3du=∑∞k=1[−k2u2]kk+1I=∑∞k=1[12k−k2(k+1)2]=∑∞k=1[12k−12(k+1)+1(k+1)2]I=12J+∑∞k=11(k+1)2withJ=∑∞k=1(1k−1k+1)=1I=12+π26−1=π2−36
Commented by abdomathmax last updated on 24/Nov/19
letI=∫0∞e−2x[ex]dxvhangementex=tgiveI=∫1+∞e−2lnt[t]dtt=∫1+∞[t]t3dt=∑n=1∞∫nn+1nt3dt=∑n=1∞n∫nn+1t−3dt=∑n=1∞n[1−2t−2]nn+1=−∑n=1∞n2{(n+1)−2−n−2}=∑n=1∞n2{1n2−1(n+1)2}=12∑n=1∞(1n−n(n+1)2)=12∑n=1∞{1n−n+1−1(n+1)2}=12∑n=1∞1n−12∑n=1∞1(n+1)+12∑n=1∞1(n+1)2=12∑n=1∞1n−12∑n=2∞1n+12∑n=2∞1n2=12+12(∑n=1∞1n2−1)=12×π26=π212
Terms of Service
Privacy Policy
Contact: info@tinkutara.com