All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27804 by abdo imad last updated on 15/Jan/18
calculate∫0∝e−ax−e−bxx2dxwitha>0b>o
Commented by abdo imad last updated on 17/Jan/18
letputI=∫0∞e−ax−e−bxx2dxwehavelimx→0e−ax−e−bxx2=limx→0−ae−ax+be−bx2x=limx→oa2e−ax−b2e−bx2=a2−b22foranothersidelimx→+∝x2e−ax−e−bxx2=0sotheintegralconvergesletintegratebypartsu′=1x2andv=e−ax−e−bxI=[−1x(e−ax−e−bx)]0+∝−∫0∞−1x(−ae−ax+be−bx)dx=b−a+∫0∞be−bx−ae−axxdxletintroducef(t)=∫0∞be−bx−ae−axxe−txdxwitht⩾0f′(t)=−∫0∞(be−bx−ae−ax)e−tx=a∫0∞e−(t+a)xdx−b∫0∞e−(t+b)xdxbut∫0∞e−(t+a)xdx=[−1t+ae−(t+a)x]0+∝=1t+aandbysamemanner∫0∞e−(t+b)xdx=1t+bf′(t)=at+a−bt+b⇒f(t)=aln/t+a/−bln/t+b/+λλ=limt→+∝(f(t)−aln/t+a/−bln/t+b/)=0sof(t)=aln/t+a/−bln/t+b/butt⩾0anda>0andb>0f(t)=aln(t+a)−bln(t+b)and∫0∞be−bx−ae−axxdx=f(0)=aln(a)−blnbfinallyI=b−a+aln(a)−bln(b).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com