Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 102417 by mathmax by abdo last updated on 09/Jul/20

calculate ∫_0 ^∞  e^(−x) ln(1+e^x )dx

calculate0exln(1+ex)dx

Answered by floor(10²Eta[1]) last updated on 09/Jul/20

u=ln(e^x +1)⇒du=(e^x /(e^x +1))dx  dv=e^(−x) dx⇒v=−e^(−x)   [−e^(−x) ln(e^x +1)]_0 ^∞ +∫_0 ^∞ (1/(e^x +1))dx  ln(2)+∫_0 ^∞ (1/(e^x +1))dx=I  u=e^x ⇒(du/u)=dx  ∫_1 ^∞ (1/(u(u+1)))du=∫_1 ^∞ ((1/u)−(1/(u+1)))du  lim_(a→∞) [ln(u)−ln(u+1)]_1 ^a =ln(2))  ⇒I=ln(2)+ln(2)=ln(4).

u=ln(ex+1)du=exex+1dxdv=exdxv=ex[exln(ex+1)]0+01ex+1dxln(2)+01ex+1dx=Iu=exduu=dx11u(u+1)du=1(1u1u+1)dulima[ln(u)ln(u+1)]1a=ln(2))I=ln(2)+ln(2)=ln(4).

Commented by mathmax by abdo last updated on 10/Jul/20

thank you sir

thankyousir

Answered by OlafThorendsen last updated on 09/Jul/20

I =  ∫_0 ^∞  e^(−x) ln(1+e^x )dx  I =  ∫_0 ^∞  e^(−x) ln[e^x (1+e^(−x) )]dx  I =  ∫_0 ^∞  [xe^(−x) +e^(−x) ln(1+e^(−x) )]dx  I =  [−(x+1)e^(−x) +(1+e^(−x) )(1−ln(1+e^(−x) ))]_0 ^(+∞)   I = (0+1)−(−1+2(1−ln2))  I = 2ln2

I=0exln(1+ex)dxI=0exln[ex(1+ex)]dxI=0[xex+exln(1+ex)]dxI=[(x+1)ex+(1+ex)(1ln(1+ex))]0+I=(0+1)(1+2(1ln2))I=2ln2

Answered by mathmax by abdo last updated on 10/Jul/20

I =∫_0 ^∞  e^(−x) ln(1+e^x )dx  by parts u^′  =e^(−x)  and v =ln(1+e^x )  I =[−e^(−x) ln(1+e^x )]_0 ^∞  +∫_0 ^∞  e^(−x) ×(e^x /(1+e^x ))dx =ln(2)+∫_0 ^∞  (dx/(1+e^x ))  4hangement e^x  =t give  ∫_0 ^∞  (dx/(1+e^x )) = ∫_1 ^(+∞ )   (dt/(t(1+t)))  =∫_1 ^(+∞) ((1/t)−(1/(t+1)))dt =[ln∣(t/(t+1))∣]_1 ^(+∞)  =−ln((1/2)) =ln(2) ⇒  I =2ln(2)

I=0exln(1+ex)dxbypartsu=exandv=ln(1+ex)I=[exln(1+ex)]0+0ex×ex1+exdx=ln(2)+0dx1+ex4hangementex=tgive0dx1+ex=1+dtt(1+t)=1+(1t1t+1)dt=[lntt+1]1+=ln(12)=ln(2)I=2ln(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com