Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 72025 by mathmax by abdo last updated on 23/Oct/19

calculate  ∫_0 ^∞  e^(−αx) ln(x)dx  with α>0

calculate0eαxln(x)dxwithα>0

Commented by mathmax by abdo last updated on 24/Oct/19

changement αx=t give   ∫_0 ^∞ e^(−αx) ln(x)dx=∫_0 ^∞ e^(−t) ln((t/α))(dt/α) =(1/α)∫_0 ^∞   e^(−t) {ln(t)−lnα}dt  =(1/α)∫_0 ^∞  e^(−t) ln(t)−((ln(α))/α)  =(1/α)(−γ)−((ln(α))/α) =−(1/α)( γ +ln(α))  ∫_0 ^∞  e^(−t) ln(t)dt=−γ  and this value is proved.

changementαx=tgive0eαxln(x)dx=0etln(tα)dtα=1α0et{ln(t)lnα}dt=1α0etln(t)ln(α)α=1α(γ)ln(α)α=1α(γ+ln(α))0etln(t)dt=γandthisvalueisproved.

Answered by mind is power last updated on 23/Oct/19

u=αx  ⇒∫_0 ^∞ e^(−u) ln((u/α)).(du/α)  =∫_0 ^(+∞) e^(−u) ln(u)(du/α)−∫_0 ^∞ e^(−u) .((ln(α))/α)du  =(1/α)∫_0 ^(+∞) e^(−u) ln(u)du+((ln(α))/α)[e^(−u) ]_0 ^(+∞)   =(1/α).γ−((ln(α))/α)=(1/α)(γ−ln(α))

u=αx0euln(uα).duα=0+euln(u)duα0eu.ln(α)αdu=1α0+euln(u)du+ln(α)α[eu]0+=1α.γln(α)α=1α(γln(α))

Terms of Service

Privacy Policy

Contact: info@tinkutara.com