All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 72025 by mathmax by abdo last updated on 23/Oct/19
calculate∫0∞e−αxln(x)dxwithα>0
Commented by mathmax by abdo last updated on 24/Oct/19
changementαx=tgive∫0∞e−αxln(x)dx=∫0∞e−tln(tα)dtα=1α∫0∞e−t{ln(t)−lnα}dt=1α∫0∞e−tln(t)−ln(α)α=1α(−γ)−ln(α)α=−1α(γ+ln(α))∫0∞e−tln(t)dt=−γandthisvalueisproved.
Answered by mind is power last updated on 23/Oct/19
u=αx⇒∫0∞e−uln(uα).duα=∫0+∞e−uln(u)duα−∫0∞e−u.ln(α)αdu=1α∫0+∞e−uln(u)du+ln(α)α[e−u]0+∞=1α.γ−ln(α)α=1α(γ−ln(α))
Terms of Service
Privacy Policy
Contact: info@tinkutara.com