Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116097 by mathmax by abdo last updated on 30/Sep/20

calculate ∫_0 ^∞  ((lnx)/(x^4  +1))dx

calculate0lnxx4+1dx

Answered by mnjuly1970 last updated on 01/Oct/20

  solution:   Ω=∫_0 ^( ∞) ((ln(x))/(1+x^4 )) =???  x^4 =t ⇒ x=t^(1/4) ⇒dx=(1/4)t^((−3)/4)    Ω =(1/(16))∫_0 ^( ∞) ((ln(t)t^(−(3/4)) )/(1+t))dt   f(λ)=∫_(0  ) ^( ∞) (t^(−λ) /(1+t))dt ⇒  Ω =((−1)/(16)) f ′((3/4))  but::  f(λ) = Γ(λ)Γ(1−λ)  ;   0<λ<1               f(λ)=(π/(sin(λπ))) ⇒ f ′(λ)=[− ((π^2 cos(πλ))/(sin^2 (πλ)))]_(λ=(3/4))                 f ′((3/4))=π^2  ∗(((√2)/2)/(1/2)) =π^2  (√2)        Ω:=− (1/(16))f ′((3/4))=−((π^2  (√2))/(16))  ✓       ...m.n.july.1970...

solution:Ω=0ln(x)1+x4=???x4=tx=t14dx=14t34Ω=1160ln(t)t341+tdtf(λ)=0tλ1+tdtΩ=116f(34)but::f(λ)=Γ(λ)Γ(1λ);0<λ<1f(λ)=πsin(λπ)f(λ)=[π2cos(πλ)sin2(πλ)]λ=34f(34)=π22212=π22Ω:=116f(34)=π2216...m.n.july.1970...

Commented by 1549442205PVT last updated on 01/Oct/20

third line →^(?) fourth line( lnt missed?)

thirdline?fourthline(lntmissed?)

Commented by mnjuly1970 last updated on 01/Oct/20

 method: feynman′s trick  please look at again.

method:feynmanstrickpleaselookatagain.

Commented by 1549442205PVT last updated on 01/Oct/20

Thank Sir,i understanded.(a^x )′=a^x lna  and put t=(1/x)−1⇒f(λ)=∫_0 ^1 x^(−λ) (1−x)^(1−λ) =β(λ,1−λ)=Γ(λ)Γ(1−λ)=(π/(sin(λπ)))  Great Sir thanh you very much

ThankSir,iunderstanded.(ax)=axlnaandputt=1x1f(λ)=01xλ(1x)1λ=β(λ,1λ)=Γ(λ)Γ(1λ)=πsin(λπ)GreatSirthanhyouverymuch

Commented by mnjuly1970 last updated on 01/Oct/20

you are welcome.

youarewelcome.

Commented by Tawa11 last updated on 06/Sep/21

grest sir

grestsir

Answered by mathdave last updated on 01/Oct/20

solution  let I=∫_0 ^1 ((lnx)/(x^4 +1))dx+∫_1 ^∞ ((lnx)/(1+x^4 ))dx=A+B  putting  x=(1/x)   into B  I=∫_0 ^1 ((lnx)/(1+x^4 ))dx+∫_1 ^0 ((ln((1/x)))/(1+(1/x^4 )))×−(1/x^2 )dx=∫_0 ^1 ((lnx)/(1+x^4 ))dx−∫_0 ^1 ((x^2 lnx)/(1+x^4 ))dx  I=(−)^n Σ_(n=0) ^∞ ∫_0 ^1 x^(4n) lnxdx−(−1)^n Σ_(n=0) ^∞ ∫_0 ^1 x^2 .x^(4n) lnxdx  I=(−1)^n Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) ∫_0 ^1 x^(4n) .x^(a−1) dx−(−1)^n Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) ∫_0 ^1 x^(4n+2) .x^(a−1) dx  I=Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) (((−1)^n )/((4n+a)))−Σ_(n=0) ^∞ (∂/∂a)∣_(a=1) (((−1)^n )/((4n+2+a)))  I=−Σ_(n=0) ^∞ (((−1)^n )/((4n+1)^2 ))+Σ_(n=0) ^∞ (((−1)^n )/((4n+3)^2 ))=−Σ_(n=−∞) ^∞ (((−1)^n )/((4n+1)^2 ))  note Σ_(n=−∞) ^∞ (((−1)^n )/((ax+1)^n ))=−(π/a^n )lim_(z→−(1/a)) (1/((n−1)!))•(d^(n−1) /dz^(n−1) )(cosec(πz))  I=−Σ_(n=−∞) ^∞ (1/((4n+1)^2 ))=−(−(π/4^2 ))lim_(z→−(1/4)) (1/((2−1)!))•(d/dz)(cosec(πz))  I=(π/(16))lim_(z→−(1/4)) (1/(1!))(−πcosec(πz)cot(πz))  I=−(π^2 /(16))cosec(−(π/4))cot(−(π/4))=−(π^2 /(16))(−(√2))(−1)=−(π^2 /(16))(√2)  ∵∫_0 ^∞ ((lnx)/(1+x^4 ))dx=−(π^2 /(8(√2)))  by mathdave(01/10/2020)

solutionletI=01lnxx4+1dx+1lnx1+x4dx=A+Bputtingx=1xintoBI=01lnx1+x4dx+10ln(1x)1+1x4×1x2dx=01lnx1+x4dx01x2lnx1+x4dxI=()nn=001x4nlnxdx(1)nn=001x2.x4nlnxdxI=(1)nn=0aa=101x4n.xa1dx(1)nn=0aa=101x4n+2.xa1dxI=n=0aa=1(1)n(4n+a)n=0aa=1(1)n(4n+2+a)I=n=0(1)n(4n+1)2+n=0(1)n(4n+3)2=n=(1)n(4n+1)2noten=(1)n(ax+1)n=πanlimz1a1(n1)!dn1dzn1(cosec(πz))I=n=1(4n+1)2=(π42)limz141(21)!ddz(cosec(πz))I=π16limz1411!(πcosec(πz)cot(πz))I=π216cosec(π4)cot(π4)=π216(2)(1)=π21620lnx1+x4dx=π282bymathdave(01/10/2020)

Commented by Tawa11 last updated on 06/Sep/21

great sir

greatsir

Answered by Bird last updated on 01/Oct/20

let f(a) =∫_0 ^∞  (t^(a−1) /(1+t)) dt  with 0<a<1  we have f(a) =(π/(sin(πa)))  and f(a) =∫_0 ^∞  (e^((a−1)lnt) /(1+t))dt ⇒  f^′ (a) =∫_0 ^∞ ((lnt t^(a−1) )/(1+t))dt=∫_0 ^∞  ((t^(a−1) lnt)/(1+t))dt  ∫_0 ^∞ ((lnx)/(x^4 +1))dx =_(x=t^(1/4) ) (1/4) ∫_0 ^∞  ((lnt)/(1+t)).(1/4)t^((1/4)−1) dt  =(1/(16)) ∫_0 ^∞  ((t^((1/4)−1)  lnt)/(1+t))dt  =(1/(16))f^′ ((1/4)) but f^′ (a)=−((π^2 cos(πa))/(sin^2 (πa)))  ⇒f^′ ((1/4))=−π^2 ×((1/( (√2)))/(1/2)) =((−2π^2 )/( (√2)))  =−(√2)π^(2 )  ⇒  ∫_0 ^∞   ((lnx)/(1+x^4 ))dx =−((π^2 (√2))/(16))

letf(a)=0ta11+tdtwith0<a<1wehavef(a)=πsin(πa)andf(a)=0e(a1)lnt1+tdtf(a)=0lntta11+tdt=0ta1lnt1+tdt0lnxx4+1dx=x=t14140lnt1+t.14t141dt=1160t141lnt1+tdt=116f(14)butf(a)=π2cos(πa)sin2(πa)f(14)=π2×1212=2π22=2π20lnx1+x4dx=π2216

Commented by mnjuly1970 last updated on 01/Oct/20

excellent sir..

excellentsir..

Commented by Bird last updated on 01/Oct/20

you are welcome

youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com