All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 31077 by abdo imad last updated on 02/Mar/18
calculate∫∫0<x<1and0<y<x2yx2+y2dxdy.
Commented by abdo imad last updated on 07/Mar/18
I=∫01(∫0x2yx2+y2dy)dxbut∫0x2yx2+y2dy=[x2+y2]y=0y=x2=x2+x4−x⇒I=∫01(x2+x4−x)dx=∫01x2+x4dx−12but∫01x2+x4dx=∫01x1+x2dx=12∫01(2x)(1+x2)12dx=12[23(1+x2)32]01=13(232−1)=13(22−1)⇒I=223−13−12=223−56.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com