Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65691 by mathmax by abdo last updated on 02/Aug/19

calculate ∫_0 ^(π/2)   ((cos^2 x)/(cosx +sinx))dx

calculate0π2cos2xcosx+sinxdx

Commented by mathmax by abdo last updated on 02/Aug/19

tan((u/2))method   let I =∫_0 ^(π/2)   ((cos^2 x)/(cosx+sinx))dx ⇒I =∫_0 ^(π/2)   ((cosx)/(1+tanx))dx  changement tan((x/2))=t  give I =∫_0 ^1    (((1−t^2 )/(1+t^2 ))/(1+((2t)/(1−t^2 ))))((2dt)/(1+t^2 ))  =2 ∫_0 ^1  ((1−t^2 )/((1+t^2 )^2 )) ((1−t^2 )/(1−t^2 +2t))dt =2 ∫_0 ^1   (((1−t^2 )^2 )/((1+t^2 )(−t^2 +2t+1)))dt  =−2 ∫_0 ^1   (((1−t^2 )^2 )/((1+t^2 )(t^2 −2t−1)))dt let decompose   F(t) =((t^4 −2t^2  +1)/((t^2 +1)(t^2 −2t−1))) ⇒F(t) =((t^4 −2t^2  +1)/(t^4 −2t^3 −t^2 +t^2 −2t−1))  =((t^4 −2t^2  +1)/(t^4 −2t^3 −2t−1)) ⇒F(t)−1 =((t^4 −2t^2  +1−t^4 +2t^3 +2t+1)/(t^4 −2t^3 −2t −1))  =((2t^3 −2t^2  +2t+2)/((t^2 +1)(t^2 −2t−1))) =G(t)=((at+b)/(t^(2 ) +1)) +(c/(t−t_1 )) +(d/(t−t_2 ))  Δ^′ =1+1=2 ⇒t_1 =1+(√2)  and t_2 =1−(√2)  c=lim_(t→t_1 ) (t−t_1 )G(t) =((2t_1 ^3 −2t_1 ^2  +2t_1  +2)/((t_1 ^2  +1)(t_1 −t_2 )))   (t_1 −t_2 =2(√2))  d =lim_(t→t_2 ) (t−t_2 )G(t_2 ) =((2t_2 ^3 −2t_2 ^2  +2t_2  +2)/((t_2 ^2  +1)(t_2 −t_1 )))  lim_(t→+∞) tG(t) =2 =a +c +d ⇒a =2−c−d  G(0) =−2=b−(c/t_1 )−(d/t_2 ) ⇒b =(c/t_1 ) +(d/t_2 )−2  rest to simplify the  calculus ⇒∫ F(t)dt =t +∫ G(t)dt  =t  +cln∣t−t_1 ∣+d∣t−t_2 ∣+(a/2)ln(t^2  +1)+b arctant +λ  ....be continued....

tan(u2)methodletI=0π2cos2xcosx+sinxdxI=0π2cosx1+tanxdxchangementtan(x2)=tgiveI=011t21+t21+2t1t22dt1+t2=2011t2(1+t2)21t21t2+2tdt=201(1t2)2(1+t2)(t2+2t+1)dt=201(1t2)2(1+t2)(t22t1)dtletdecomposeF(t)=t42t2+1(t2+1)(t22t1)F(t)=t42t2+1t42t3t2+t22t1=t42t2+1t42t32t1F(t)1=t42t2+1t4+2t3+2t+1t42t32t1=2t32t2+2t+2(t2+1)(t22t1)=G(t)=at+bt2+1+ctt1+dtt2Δ=1+1=2t1=1+2andt2=12c=limtt1(tt1)G(t)=2t132t12+2t1+2(t12+1)(t1t2)(t1t2=22)d=limtt2(tt2)G(t2)=2t232t22+2t2+2(t22+1)(t2t1)limt+tG(t)=2=a+c+da=2cdG(0)=2=bct1dt2b=ct1+dt22resttosimplifythecalculusF(t)dt=t+G(t)dt=t+clntt1+dtt2+a2ln(t2+1)+barctant+λ....becontinued....

Answered by Tanmay chaudhury last updated on 02/Aug/19

I=∫_0 ^(π/2) ((cos^2 x)/(cosx+sinx))dx  I=∫_0 ^(π/2) ((cos^2 ((π/2)−x))/(cos((π/2)−x)+sin((π/2)−x)))dx  =∫_0 ^(π/2) ((sin^2 x)/(sinx+cosx))dx  2I=∫_0 ^(π/2) (dx/(sinx+cosx))  2I=∫_0 ^(π/2) (dx/((√2) ((1/(√2))sinx+(1/(√2))cosx)))  I=(1/(2(√2)))∫_0 ^(π/2) (dx/(sin((π/4)+x)))  I=(1/(2(√2)))∫_0 ^(π/4) cosec((π/4)+x)dx  I=(1/(2(√2)))∣lntan((((π/4)+x)/2))∣_0 ^(π/4)   =(1/(2(√2)))[lntan((π/4))−lntan((π/8))]  =((−1)/(2(√2)))lntan((π/8))

I=0π2cos2xcosx+sinxdxI=0π2cos2(π2x)cos(π2x)+sin(π2x)dx=0π2sin2xsinx+cosxdx2I=0π2dxsinx+cosx2I=0π2dx2(12sinx+12cosx)I=1220π2dxsin(π4+x)I=1220π4cosec(π4+x)dxI=122lntan(π4+x2)0π4=122[lntan(π4)lntan(π8)]=122lntan(π8)

Commented by mathmax by abdo last updated on 02/Aug/19

thank you sir tanmay

thankyousirtanmay

Commented by Tanmay chaudhury last updated on 02/Aug/19

most eelcome sir...

mosteelcomesir...

Commented by peter frank last updated on 02/Aug/19

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com