Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36201 by prof Abdo imad last updated on 30/May/18

calculate ∫_0 ^(π/2)    (dθ/(1+2sin^2 θ))

calculate0π2dθ1+2sin2θ

Commented by prof Abdo imad last updated on 01/Jun/18

let put I = ∫_0 ^(π/2)      (dθ/(1+2sin^2 θ))  I = ∫_0 ^(π/2)     (dθ/(1 +2((1−cos(2θ))/2))) =∫_0 ^(π/2)   (dθ/(2−cos(2θ)))  =_(2θ=t)   ∫_0 ^π      (1/(2 −cos(t))) (dt/2)  =_(tan((t/2))=x)  ∫_0 ^(+∞)       (1/(2{2−((1−x^2 )/(1+x^2 ))})) ((2dx)/(1+x^2 ))  = ∫_0 ^(+∞)      (dx/(2(1+x^2 ) −1+x^2 ))  =∫_0 ^(+∞)      (dx/(1 +3x^2 )) changement  x(√3) =u give  I = ∫_0 ^∞     (1/(1+u^2 )) (du/(√3)) = (1/(√3)) (π/2) ⇒ I = (π/(2(√3))) .

letputI=0π2dθ1+2sin2θI=0π2dθ1+21cos(2θ)2=0π2dθ2cos(2θ)=2θ=t0π12cos(t)dt2=tan(t2)=x0+12{21x21+x2}2dx1+x2=0+dx2(1+x2)1+x2=0+dx1+3x2changementx3=ugiveI=011+u2du3=13π2I=π23.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com