All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 50415 by Abdo msup. last updated on 16/Dec/18
calculate∫0π2dt1+cosθcost
Commented by Abdo msup. last updated on 18/Dec/18
letputcosθ=λandfindA(λ)=∫0π2dt1+λcostwith∣λ∣⩽1changementtan(t2)=ugiveA(λ)=∫0111+λ1−u21+u22du1+u2=∫012du1+u2+λ−λu2=∫012du(1−λ)u2+1+λ=21−λ∫01duu2+1+λ1−λ=u=1+λ1−λt21−λ∫01−λ1+λ1+λ1−λdt1+λ1−λ(1+t2)=21+λ1+λ1−λarctan(1−λ1+λ)=21−λ2arctan(1−λ1+λ)⇒∫0π2dt1+coθcost=A(cosθ)=21−cos2θarctan(1−cosθ1+cosθ)=2∣sinθ∣arctan∣tan(θ2)∣.
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Dec/18
∫dt1+cosθcost1cosθ∫dtsecθ+cost1cosθ∫dtsecθ+1−tan2t21+tan2t21cosθ∫sec2t2dtsecθ+secθtan2t2+1−tan2t2=secθ∫sec2t2×dt(secθ+1)+tan2t2(secθ−1)=secθ∫sec2t2(secθ−1){secθ+1secθ−1+tan2t2}dt=secθsecθ−1∫sec2t21+cosθ1−cosθ+tan2t2dt=11−cosθ∫sec2t2dtcot2θ2+tan2t2k=tant2dk=12sec2t2dt=12sin2θ2∫2dkcot2θ2+k2=1sin2θ2∫dkcot2θ2+k2=1sin2θ2×1cotθ2tan−1(kcotθ2)=2sinθtan−1(tant2cotθ2)+crequiredansweriz2sinθ∣tan−1(tant2cotθ2)∣0π2=2sinθ[tan−1(tanπ4cotθ2)−tan−1(tan0cotθ2)]=2sinθ[tan−1(tanθ2)]=2sinθ×θ2=θsinθ
Terms of Service
Privacy Policy
Contact: info@tinkutara.com