Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 50415 by Abdo msup. last updated on 16/Dec/18

calculate ∫_0 ^(π/2)   (dt/(1+cosθ cost))

calculate0π2dt1+cosθcost

Commented by Abdo msup. last updated on 18/Dec/18

let put cosθ = λ and find A(λ)=∫_0 ^(π/2)    (dt/(1+λ cost))  with ∣λ∣≤1  changement tan((t/2))= u give  A(λ)= ∫_0 ^1     (1/(1+λ((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  =∫_0 ^1     ((2du)/(1+u^2  +λ−λu^2 )) =∫_0 ^1    ((2du)/((1−λ)u^2  +1+λ))  =(2/(1−λ)) ∫_0 ^1    (du/(u^2  +((1+λ)/(1−λ))))   =_(u=(√((1+λ)/(1−λ)))t)    (2/(1−λ)) ∫_0 ^(√((1−λ)/(1+λ)))      (((√((1+λ)/(1−λ)))dt)/(((1+λ)/(1−λ))(1+t^2 )))  =(2/(1+λ)) ((√(1+λ))/(√(1−λ)))  arctan((√((1−λ)/(1+λ))))  = (2/(√(1−λ^2 ))) arctan((√((1−λ)/(1+λ)))) ⇒  ∫_0 ^(π/2)     (dt/(1+coθ cost)) =A(cosθ)  =(2/(√(1−cos^2 θ))) arctan((√((1−cosθ)/(1+cosθ))) )  =(2/(∣sinθ∣)) arctan∣tan((θ/2))∣ .

letputcosθ=λandfindA(λ)=0π2dt1+λcostwithλ∣⩽1changementtan(t2)=ugiveA(λ)=0111+λ1u21+u22du1+u2=012du1+u2+λλu2=012du(1λ)u2+1+λ=21λ01duu2+1+λ1λ=u=1+λ1λt21λ01λ1+λ1+λ1λdt1+λ1λ(1+t2)=21+λ1+λ1λarctan(1λ1+λ)=21λ2arctan(1λ1+λ)0π2dt1+coθcost=A(cosθ)=21cos2θarctan(1cosθ1+cosθ)=2sinθarctantan(θ2).

Answered by tanmay.chaudhury50@gmail.com last updated on 17/Dec/18

∫(dt/(1+cosθcost))  (1/(cosθ))∫(dt/(secθ+cost))  (1/(cosθ))∫(dt/(secθ+((1−tan^2 (t/2))/(1+tan^2 (t/2)))))  (1/(cosθ))∫((sec^2 (t/2)dt)/(secθ+secθtan^2 (t/2)+1−tan^2 (t/2)))  =secθ∫((sec^2 (t/2)×dt)/((secθ+1)+tan^2 (t/2)(secθ−1)))  =secθ∫((sec^2 (t/2))/((secθ−1){((secθ+1)/(secθ−1))+tan^2 (t/2)}))dt  =((secθ)/(secθ−1))∫((sec^2 (t/2))/(((1+cosθ)/(1−cosθ))+tan^2 (t/2)))dt  =(1/(1−cosθ))∫((sec^2 (t/2)dt)/(cot^2 (θ/2)+tan^2 (t/2)))  k=tan(t/2)  dk=(1/2)sec^2 (t/2)dt  =(1/(2sin^2 (θ/2)))∫((2dk)/(cot^2 (θ/2)+k^2 ))  =(1/(sin^2 (θ/2)))∫(dk/(cot^2 (θ/2)+k^2 ))  =(1/(sin^2 (θ/2)))×(1/(cot(θ/2)))tan^(−1) ((k/(cot(θ/2))))  =(2/(sinθ))tan^(−1) (((tan(t/2))/(cot(θ/2))))+c  required answer iz  (2/(sinθ))∣tan^(−1) (((tan(t/2))/(cot(θ/2))))∣_0 ^(π/2)   =(2/(sinθ))[tan^(−1) (((tan(π/4))/(cot(θ/2))))−tan^(−1) (((tan0)/(cot(θ/2))))]  =(2/(sinθ))[tan^(−1) (tan(θ/2))]  =(2/(sinθ))×(θ/2)=(θ/(sinθ))

dt1+cosθcost1cosθdtsecθ+cost1cosθdtsecθ+1tan2t21+tan2t21cosθsec2t2dtsecθ+secθtan2t2+1tan2t2=secθsec2t2×dt(secθ+1)+tan2t2(secθ1)=secθsec2t2(secθ1){secθ+1secθ1+tan2t2}dt=secθsecθ1sec2t21+cosθ1cosθ+tan2t2dt=11cosθsec2t2dtcot2θ2+tan2t2k=tant2dk=12sec2t2dt=12sin2θ22dkcot2θ2+k2=1sin2θ2dkcot2θ2+k2=1sin2θ2×1cotθ2tan1(kcotθ2)=2sinθtan1(tant2cotθ2)+crequiredansweriz2sinθtan1(tant2cotθ2)0π2=2sinθ[tan1(tanπ4cotθ2)tan1(tan0cotθ2)]=2sinθ[tan1(tanθ2)]=2sinθ×θ2=θsinθ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com