Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60893 by mathsolverby Abdo last updated on 26/May/19

calculate ∫_0 ^(π/2)   (dx/((√2)cos^2 x +(√3)sin^2 x))

calculate0π2dx2cos2x+3sin2x

Commented by maxmathsup by imad last updated on 27/May/19

let A =∫_0 ^(π/2)   (dx/((√2)cos^2 x +(√3)sin^2 x)) ⇒ A =∫_0 ^(π/2)    (dx/((√2)((1+cos(2x))/2) +(√3)((1−cos(2x))/2)))  =2 ∫_0 ^(π/2)    (dx/((√2) +(√3) +((√2)−(√3))cos(2x))) =_(tanx=t)    2 ∫_0 ^(+∞)    (1/((√2) +(√3)+((√2)−(√3))((1−t^2 )/(1+t^2 )))) (dt/(1+t^2 ))  =2 ∫_0 ^∞     (1/((1+t^2 )((√2) +(√3)) +(√2)−(√3))) dt  =2 ∫_0 ^∞       (dt/((√2) +(√3) +((√2) +(√3))t^2  +(√2)−(√3))) =2∫_0 ^∞      (dt/(2(√2) +((√2)+(√3))t^2 ))  =(1/(√2))∫_0 ^∞     (dt/(1+(((√2) +(√3))/(2(√2)))t^2 ))   changement  (√(((√2) +(√3))/(2(√2) )))t =u give  A =(1/(√2)) ∫_0 ^∞       (1/(1+u^2 )) (√((2(√2))/((√2) +(√3)))) du =((√(√2))/(√((√2) +(√3)))) ∫_0 ^∞     (du/(1+u^2 )) =(π/2) ((√(√2))/(√((√2) +(√3)))) .

letA=0π2dx2cos2x+3sin2xA=0π2dx21+cos(2x)2+31cos(2x)2=20π2dx2+3+(23)cos(2x)=tanx=t20+12+3+(23)1t21+t2dt1+t2=201(1+t2)(2+3)+23dt=20dt2+3+(2+3)t2+23=20dt22+(2+3)t2=120dt1+2+322t2changement2+322t=ugiveA=12011+u2222+3du=22+30du1+u2=π222+3.

Answered by Prithwish sen last updated on 27/May/19

∫(dx/((√2)cos^2 x+ (√3)sin^2 x)) =∫((sec^2 x dx)/((√2)+(√(3 ))tan^2 x))  Now putting tanx = v  then sec^2 x dx =dv   the integral changes to  ∫(dv/((√2)+(√3)v^2 ))

dx2cos2x+3sin2x=sec2xdx2+3tan2xNowputtingtanx=vthensec2xdx=dvtheintegralchangestodv2+3v2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com