All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 60893 by mathsolverby Abdo last updated on 26/May/19
calculate∫0π2dx2cos2x+3sin2x
Commented by maxmathsup by imad last updated on 27/May/19
letA=∫0π2dx2cos2x+3sin2x⇒A=∫0π2dx21+cos(2x)2+31−cos(2x)2=2∫0π2dx2+3+(2−3)cos(2x)=tanx=t2∫0+∞12+3+(2−3)1−t21+t2dt1+t2=2∫0∞1(1+t2)(2+3)+2−3dt=2∫0∞dt2+3+(2+3)t2+2−3=2∫0∞dt22+(2+3)t2=12∫0∞dt1+2+322t2changement2+322t=ugiveA=12∫0∞11+u2222+3du=22+3∫0∞du1+u2=π222+3.
Answered by Prithwish sen last updated on 27/May/19
∫dx2cos2x+3sin2x=∫sec2xdx2+3tan2xNowputtingtanx=vthensec2xdx=dvtheintegralchangesto∫dv2+3v2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com