Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 34283 by math khazana by abdo last updated on 03/May/18

calculate  ∫_0 ^(π/2)       (dx/(cos^4 x +sin^4 x))

calculate0π2dxcos4x+sin4x

Commented by math khazana by abdo last updated on 08/May/18

let put I = ∫_0 ^(π/2)      (dx/(cos^4 x +sin^4 x))  I  = ∫_0 ^(π/2)     (dx/((cos^2 x+sin^2 x)^2  −2 cos^2 x sin^2 x))  = ∫_0 ^(π/2)      (dx/(1^2  −2 cos^2 x .sin^2 x))  = ∫_0 ^(π/2)      (dx/(1−2 ((1+cos(2x))/2).((1−cos(2x))/2)))  = ∫_0 ^(π/2)         (dx/(1−(1/2)(1−cos^2 (2x))))  = ∫_0 ^(π/2)        ((2dx)/(2 −1 +cos^2 (2x)))  = ∫_0 ^(π/2)     ((2dx)/(1+((1+cos(4x))/2))) =∫_0 ^(π/2)     ((4dx)/(3+ cos(4x)))  = _(4x=t)    ∫_0 ^(2π)       (dt/(3 +cost))  changement e^(it)  =z give  I = ∫_(∣z∣=1)         (1/(3 + ((z+z^(−1) )/2))) (dz/(iz))  = ∫_(∣z∣=1)       ((2dz)/(iz( 6+z +z^(−1) ))) = ∫_(∣z∣=1)    ((−2i)/(6z +z^2  +1))dz  let introduce the complex function  ϕ(z)=   ((−2i)/(z^2  +6z +1))  .poles of ϕ?

letputI=0π2dxcos4x+sin4xI=0π2dx(cos2x+sin2x)22cos2xsin2x=0π2dx122cos2x.sin2x=0π2dx121+cos(2x)2.1cos(2x)2=0π2dx112(1cos2(2x))=0π22dx21+cos2(2x)=0π22dx1+1+cos(4x)2=0π24dx3+cos(4x)=4x=t02πdt3+costchangementeit=zgiveI=z∣=113+z+z12dziz=z∣=12dziz(6+z+z1)=z∣=12i6z+z2+1dzletintroducethecomplexfunctionφ(z)=2iz2+6z+1.polesofφ?

Commented by math khazana by abdo last updated on 08/May/18

Δ^′  = 3^2 −1 =8 ⇒z_1 =−3 +2(√2)  z_2 =−3−2(√2)  ∣z_1 ∣ −1 =2(√2) −3−1= 2(√2) −4<0  ∣z_2 ∣−1 = 3+2(√2)−1= 2 +2(√2)>0 (to eliminate  from residus)  ∫_(∣z∣=1)   ϕ(z)dz =2iπ Res(ϕ,z_1 )  Res(ϕ,z_1 ) = ((−2i)/((z_1  −z_2 )))  = ((−2i)/(4(√2))) = ((−i)/(2(√2)))  ∫_(∣z∣=1)    ϕ(z)dz =2iπ .((−i)/(2(√2))) = (π/(√2))  I  = (π/(√2))  .

Δ=321=8z1=3+22z2=322z11=2231=224<0z21=3+221=2+22>0(toeliminatefromresidus)z∣=1φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=2i(z1z2)=2i42=i22z∣=1φ(z)dz=2iπ.i22=π2I=π2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com