All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 34283 by math khazana by abdo last updated on 03/May/18
calculate∫0π2dxcos4x+sin4x
Commented by math khazana by abdo last updated on 08/May/18
letputI=∫0π2dxcos4x+sin4xI=∫0π2dx(cos2x+sin2x)2−2cos2xsin2x=∫0π2dx12−2cos2x.sin2x=∫0π2dx1−21+cos(2x)2.1−cos(2x)2=∫0π2dx1−12(1−cos2(2x))=∫0π22dx2−1+cos2(2x)=∫0π22dx1+1+cos(4x)2=∫0π24dx3+cos(4x)=4x=t∫02πdt3+costchangementeit=zgiveI=∫∣z∣=113+z+z−12dziz=∫∣z∣=12dziz(6+z+z−1)=∫∣z∣=1−2i6z+z2+1dzletintroducethecomplexfunctionφ(z)=−2iz2+6z+1.polesofφ?
Δ′=32−1=8⇒z1=−3+22z2=−3−22∣z1∣−1=22−3−1=22−4<0∣z2∣−1=3+22−1=2+22>0(toeliminatefromresidus)∫∣z∣=1φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=−2i(z1−z2)=−2i42=−i22∫∣z∣=1φ(z)dz=2iπ.−i22=π2I=π2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com