All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 50414 by Abdo msup. last updated on 16/Dec/18
calculate∫0π2xsinxcosxtan2x+cotan2xdxctanx=1tanx
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Dec/18
I=∫0π2(π2−x)cosxsinxcot2x+tan2xdx2I=∫0π2(π2−x)cosxsinx+xsinxcosxcot2x+tan2xdx2I=∫0π2π2sinxcosxtan2x+cot2xdx2I=π2∫0π2tanxcos2xtan2x+1tan2xdxnowI1=∫tanx(1+tan2x)(tan2x+1tan2x)dxt=tanxdt=sec2xdxdt1+t2=dx∫t(1+t2)(t2+1t2)×dt1+t2∫t3(1+t2)2(t4+1)dtk=t2dk=2tdtdk2=tdt∫k×dk2(1+k)2(1+k2)14∫2kdk(1+k)2(1+k2)14∫(1+k)2−(1+k2)(1+k)2(1+k2)dk14∫dk1+k2−14∫dk(1+k)2=14tan−1(k)−14×(1+k)−2+1−2+1=14tan−1(k)+14(1+k)=14tan−1(t2)+14(1+t2)=14tan−1(tan2x)+14(1+tan2x)2I=π2×∣14tan−1(tan2x)+14(1+tan2x)∣0π22I=π8[{(tan−1(tan2π2)+11+tan2π2)}−{(tan−1(0)+11+0)}]I=π16[(tan−1(∞)+11+∞)−(1)]I=π16(π2+0−1)I=π232−π16plscheck...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com