Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40130 by maxmathsup by imad last updated on 16/Jul/18

calculate ∫_0 ^(π/4)   cos^4 x sin^2 xdx

calculate0π4cos4xsin2xdx

Commented by math khazana by abdo last updated on 21/Jul/18

let I  = ∫_0 ^(π/4)  cos^4 x sin^2 xdx by parts  I  = ∫_0 ^(π/4)  sinx cos^4 x sinx dx  =[−(1/5) cos^5 x sinx]_0 ^(π/4)   −∫_0 ^(π/4)  (−(1/5))cos^5 x cosxdx  =−(1/5)(((√2)/2))^6  +(1/5) ∫_0 ^(π/4)  cos^6 x dx but  ∫_0 ^(π/4)  cos^6 xdx = ∫_0 ^(π/4)  (((1+cos(2x))/2))^3 dx  =(1/8) ∫_0 ^(π/4) { cos^3 (2x) +3cos^2 (2x) +3cos(2x)+1)}dx  =(1/8) ∫_0 ^(π/4)  cos^3 (2x)dx +(3/8) ∫_0 ^(π/4)  ((1+cos(4x))/2)dx  +(3/8) ∫_0 ^(π/4)  cos(2x)dx +(π/(32))  but  ∫_0 ^(π/4)  cos(2x)dx=[(1/2)sin(2x)]_0 ^(π/4) =(1/2)  ∫_0 ^(π/4)   ((1+cos(4x))/2)dx =(π/8)  +(1/8)[sin(4x)]_0 ^(π/4)   =(π/8)   ∫_0 ^(π/4)  cos^3 (2x)dx = ∫_0 ^(π/4)  cos(2x)((1+cos(4x))/2)dx  =(1/2) ∫_0 ^(π/4)  cos(2x) +(1/2) ∫_0 ^(π/4)  cos(2x)cos(4x)dx  =(1/4)[sin(2x)]_0 ^(π/4)   +(1/4) ∫_0 ^(π/4) {cos(6x)+cos(2x))dx  =(1/4)  +(1/(24))[sin(6x)]_0 ^(π/4)  +(1/8)[sin(2x)]_0 ^(π/4)   =(1/4) −(1/(24)) +(1/8) =((6−1+3)/(24)) =(8/(24)) =(1/3)  so the value of I is determined.

letI=0π4cos4xsin2xdxbypartsI=0π4sinxcos4xsinxdx=[15cos5xsinx]0π40π4(15)cos5xcosxdx=15(22)6+150π4cos6xdxbut0π4cos6xdx=0π4(1+cos(2x)2)3dx=180π4{cos3(2x)+3cos2(2x)+3cos(2x)+1)}dx=180π4cos3(2x)dx+380π41+cos(4x)2dx+380π4cos(2x)dx+π32but0π4cos(2x)dx=[12sin(2x)]0π4=120π41+cos(4x)2dx=π8+18[sin(4x)]0π4=π80π4cos3(2x)dx=0π4cos(2x)1+cos(4x)2dx=120π4cos(2x)+120π4cos(2x)cos(4x)dx=14[sin(2x)]0π4+140π4{cos(6x)+cos(2x))dx=14+124[sin(6x)]0π4+18[sin(2x)]0π4=14124+18=61+324=824=13sothevalueofIisdetermined.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com