All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 40130 by maxmathsup by imad last updated on 16/Jul/18
calculate∫0π4cos4xsin2xdx
Commented by math khazana by abdo last updated on 21/Jul/18
letI=∫0π4cos4xsin2xdxbypartsI=∫0π4sinxcos4xsinxdx=[−15cos5xsinx]0π4−∫0π4(−15)cos5xcosxdx=−15(22)6+15∫0π4cos6xdxbut∫0π4cos6xdx=∫0π4(1+cos(2x)2)3dx=18∫0π4{cos3(2x)+3cos2(2x)+3cos(2x)+1)}dx=18∫0π4cos3(2x)dx+38∫0π41+cos(4x)2dx+38∫0π4cos(2x)dx+π32but∫0π4cos(2x)dx=[12sin(2x)]0π4=12∫0π41+cos(4x)2dx=π8+18[sin(4x)]0π4=π8∫0π4cos3(2x)dx=∫0π4cos(2x)1+cos(4x)2dx=12∫0π4cos(2x)+12∫0π4cos(2x)cos(4x)dx=14[sin(2x)]0π4+14∫0π4{cos(6x)+cos(2x))dx=14+124[sin(6x)]0π4+18[sin(2x)]0π4=14−124+18=6−1+324=824=13sothevalueofIisdetermined.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com