All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 32353 by abdo imad last updated on 23/Mar/18
calculate∫0π4cos(x)ln(cos(x))dx.
Answered by sma3l2996 last updated on 25/Mar/18
A=∫0π/4cos(x)ln(cosx)dxbypartsu=ln(cosx)⇒u′=−tanxv′=cosx⇒v=sinxA=[sin(x)ln(cosx)]0π/4+∫0π/4sin2xcosxdx=−24ln(2)+∫0π/4(1cosx−cosx)dxlett=tan(x/2)A=−24ln(2)−[sinx]0π/4+∫0tan(π/8)dt1−t2=−24ln(2)−22+12[ln∣1+t1−t∣]0tan(π/8)A=−24ln(2)−22+12ln(21−tan(π/8)−1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com