All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 32354 by abdo imad last updated on 23/Mar/18
calculate∫0π4dt(1+sin2t)2.
Commented by abdo imad last updated on 28/Mar/18
letputI=∫0π4dt(1+sin2t)2I=∫0π4dt(1+1−cos(2t)2)2=4∫0π4dt(3−cos(2t))2=2t=x4∫0π21(3−cosx)2dx2=2∫0π2dx(3−cosx)2ch.tan(x2)=tgiveI=2∫011(3−1−t21+t2)22dt1+t2=4∫01dt(1+t2)(3+3t2−1+t2)2(1+t2)2=4∫011+t2(2+4t2)2dt=∫011+t2(1+2t2)2dt=∫011+2t2−t2(1+2t2)2dt=∫01dt(1+2t2)dt−∫01t2(1+2t2)2dt∫01dt1+2t2dt=t2=u∫0211+u2du2=12artan(2)∫01t2(1+2t2)2dt=t2=u∫021(1+u2)2u22du2=122∫02u2(1+u2)2dubut∫02u2(1+u2)2du=−12∫02u.(−2u(1+u2)2)dubyparts=−12([u1+u2]02−∫02u1+u2du)=−1223+14∫022u1+u2du=−26+14[ln(1+u2)]02=−26+14ln(3)⇒∫01t2(1+2t2)2dt=122(−26+14ln3)=−112+ln382I=12arctan(2)+112−ln382.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com