Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32354 by abdo imad last updated on 23/Mar/18

calculate  ∫_0 ^(π/4)        (dt/((1+sin^2 t)^2 )) .

calculate0π4dt(1+sin2t)2.

Commented by abdo imad last updated on 28/Mar/18

let put I = ∫_0 ^(π/4)   (dt/((1+sin^2 t)^2 ))  I = ∫_0 ^(π/4)    (dt/((1+((1−cos(2t))/2))^2 )) = 4∫_0 ^(π/4)     (dt/((3−cos(2t))^2 ))  =_(2t=x)  4 ∫_0 ^(π/2)       (1/((3−cosx)^2 )) (dx/2) = 2 ∫_0 ^(π/2)      (dx/((3−cosx)^2 ))  ch. tan((x/2)) =tgive  I = 2 ∫_0 ^1       (1/((3 −((1−t^2 )/(1+t^2 )))^2 )) ((2dt)/(1+t^2 )) = 4  ∫_0 ^1      (dt/((1+t^2 ) (((3 +3t^2 −1+t^2 )^2 )/((1+t^2 )^2 ))))  = 4 ∫_0 ^1     ((1+t^2 )/((2+4t^2 )^2 ))dt  = ∫_0 ^1    ((1+t^2 )/((1+2t^2 )^2 )) dt  = ∫_0 ^1   ((1+2t^2  −t^2 )/((1+2t^2 )^2 ))dt = ∫_0 ^1    (dt/((1+2t^2 ))) dt  − ∫_0 ^1   (t^2 /((1+2t^2 )^2 ))dt  ∫_0 ^1   (dt/(1+2t^2 ))dt =_(t(√2) =u)  ∫_0 ^(√2)    (1/(1+u^2 ))  (du/(√2)) = (1/(√2)) artan((√2))  ∫_0 ^1    (t^2 /((1+2t^2 )^2 ))dt =_(t(√2)=u)   ∫_0 ^(√2)    (1/((1+u^2 )^2 )) (u^2 /2) (du/(√2))  = (1/(2(√2))) ∫_0 ^(√2)    (u^2 /((1+u^2 )^2 ))du  but        ∫_0 ^(√2)   (u^2 /((1+u^2 )^2 ))du =−(1/2) ∫_0 ^(√2)  u.(((−2u)/((1+u^2 )^2 )))du by parts  =−(1/2) ( [ (u/(1+u^2 ))]_0 ^(√2)   −∫_0 ^(√2)   (u/(1+u^2 )) du)  =−(1/2) ((√2)/3) +(1/4) ∫_0 ^(√2)   ((2u)/(1+u^2 ))du =((−(√2))/6)  +(1/4) [ln(1+u^2 )]_0 ^(√2)   = ((−(√2))/6) +(1/4)ln(3) ⇒∫_0 ^1   (t^2 /((1+2t^2 )^2 ))dt =(1/(2(√2)))(((−(√2))/6) +(1/4)ln3)  = ((−1)/(12)) +((ln3)/(8(√2)))  I = (1/(√2)) arctan((√2)) +(1/(12)) −((ln3)/(8(√2))) .

letputI=0π4dt(1+sin2t)2I=0π4dt(1+1cos(2t)2)2=40π4dt(3cos(2t))2=2t=x40π21(3cosx)2dx2=20π2dx(3cosx)2ch.tan(x2)=tgiveI=2011(31t21+t2)22dt1+t2=401dt(1+t2)(3+3t21+t2)2(1+t2)2=4011+t2(2+4t2)2dt=011+t2(1+2t2)2dt=011+2t2t2(1+2t2)2dt=01dt(1+2t2)dt01t2(1+2t2)2dt01dt1+2t2dt=t2=u0211+u2du2=12artan(2)01t2(1+2t2)2dt=t2=u021(1+u2)2u22du2=12202u2(1+u2)2dubut02u2(1+u2)2du=1202u.(2u(1+u2)2)dubyparts=12([u1+u2]0202u1+u2du)=1223+14022u1+u2du=26+14[ln(1+u2)]02=26+14ln(3)01t2(1+2t2)2dt=122(26+14ln3)=112+ln382I=12arctan(2)+112ln382.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com