Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 34219 by abdo imad last updated on 03/May/18

calculate  ∫_0 ^(π/4)     (dx/(cos^3 x +sin^3 x))

calculate0π4dxcos3x+sin3x

Commented by abdo imad last updated on 31/May/18

I = ∫_0 ^(π/4)    (dx/((cosx +sinx)(cos^2 x −cosx sinx +sin^2 x)))  = ∫_0 ^(π/4)    (dx/((cosx +sinx)(1−cosx sinx)))  =∫_0 ^(π/2)    (dx/((√2) cos((π/4)−x)(1−(1/2)sin(2x))))  =_((π/4)−x = t)  ∫_(π/4) ^(−(π/4))    ((−dt)/((√2)cost(1−(1/2)sin(2((π/4)−t))))  =(√2) ∫_(−(π/4)) ^(π/4)     (dt/(cos(t)(2−sin((π/2)−2t))))  =(√2)∫_(−(π/4)) ^(π/4)     (dt/(cos(t)(2 −cos(2t))))  =2(√2) ∫_0 ^(π/4)        (dt/(cost( 2−2cos^2 t +1)))  =2(√2)∫_0 ^(π/4)    (dt/(cost( 3−2 cos^2 t)))  changement tan((t/2)) =x  give   I = 2(√2) ∫_0 ^((√2)−1)   (1/(((1−x^2 )/(1+x^2 )){ 3−2 (((1−x^2 )/(1+x^2 )))^2 })) ((2dx)/(1+x^2 ))  =4(√2) ∫_0 ^((√2)−1)     (dx/((1−x^2 ){ ((3(1+x^2 )^2  −2(1−x^2 )^2 )/((1+x^2 )^2 ))}))  =4(√2) ∫_0 ^((√2)−1)      (((1+x^2 )^2 )/((1−x^2 ){ 3(1+x^2 )^2  −2(1−x^2 )^2 }))dx  =4(√2)∫_0 ^((√2) −1)       ((x^4  +2x^2  +1)/((1−x^2 )(  3x^4  +6x^2  +3 −2x^4  +4x^2  −2}))dx  =4(√2)∫_0 ^((√2) −1)     ((x^4  +2x^2  +1)/((1−x^2 )( x^4  +10x^2  +1)))dx....be continued...

I=0π4dx(cosx+sinx)(cos2xcosxsinx+sin2x)=0π4dx(cosx+sinx)(1cosxsinx)=0π2dx2cos(π4x)(112sin(2x))=π4x=tπ4π4dt2cost(112sin(2(π4t))=2π4π4dtcos(t)(2sin(π22t))=2π4π4dtcos(t)(2cos(2t))=220π4dtcost(22cos2t+1)=220π4dtcost(32cos2t)changementtan(t2)=xgiveI=2202111x21+x2{32(1x21+x2)2}2dx1+x2=42021dx(1x2){3(1+x2)22(1x2)2(1+x2)2}=42021(1+x2)2(1x2){3(1+x2)22(1x2)2}dx=42021x4+2x2+1(1x2)(3x4+6x2+32x4+4x22}dx=42021x4+2x2+1(1x2)(x4+10x2+1)dx....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com