All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 34219 by abdo imad last updated on 03/May/18
calculate∫0π4dxcos3x+sin3x
Commented by abdo imad last updated on 31/May/18
I=∫0π4dx(cosx+sinx)(cos2x−cosxsinx+sin2x)=∫0π4dx(cosx+sinx)(1−cosxsinx)=∫0π2dx2cos(π4−x)(1−12sin(2x))=π4−x=t∫π4−π4−dt2cost(1−12sin(2(π4−t))=2∫−π4π4dtcos(t)(2−sin(π2−2t))=2∫−π4π4dtcos(t)(2−cos(2t))=22∫0π4dtcost(2−2cos2t+1)=22∫0π4dtcost(3−2cos2t)changementtan(t2)=xgiveI=22∫02−111−x21+x2{3−2(1−x21+x2)2}2dx1+x2=42∫02−1dx(1−x2){3(1+x2)2−2(1−x2)2(1+x2)2}=42∫02−1(1+x2)2(1−x2){3(1+x2)2−2(1−x2)2}dx=42∫02−1x4+2x2+1(1−x2)(3x4+6x2+3−2x4+4x2−2}dx=42∫02−1x4+2x2+1(1−x2)(x4+10x2+1)dx....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com