All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35685 by prof Abdo imad last updated on 22/May/18
calculate∫0π4xartan(2x+1)dx
Commented by prof Abdo imad last updated on 23/May/18
letputI=∫0π4xarctan(2x+1)dxbypartsI=[x22arctan(2x+1)]0π4−∫0π4x2221+(2x+1)2dx=π232arctan(π2+1)−∫0π4x21+(2x+1)2dxletcalculateJ=∫0π4x21+(2x+1)2dxJ=2x+1=u∫1π2+1(u−12)21+u2du2=18∫1π2+1u2−2u+11+u2du8J=∫1π2+1(1−2u1+u2)du=π2−[ln(1+u2)]1π2+1=π2−{ln(1+(π2+1)2)−ln(2)}⇒J=π16−18{ln(1+(π2+1)2)−ln(2)}soI=π232arctan(π2+1)−π16+18{ln(1+(π2+1)2)−ln(2)}
Answered by ajfour last updated on 23/May/18
I=x22tan−1(2x+1)∣0π/4−∫0π/4(x22)[21+(2x+1)2]dx=π232tan−1(1+π2)−I1I1=14∫0π/41+(2x+1)2−2(2x+1)1+(2x+1)2dx=x4∣0π/4−14∫21+(1+π2)2dtt=π16−14ln[12+(π+2)28]I=π232tan−1(1+π2)−π16+14ln[12+(π+2)28].
Terms of Service
Privacy Policy
Contact: info@tinkutara.com