Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35685 by prof Abdo imad last updated on 22/May/18

calculate  ∫_0 ^(π/4)    x artan(2x+1)dx

calculate0π4xartan(2x+1)dx

Commented by prof Abdo imad last updated on 23/May/18

let put I  = ∫_0 ^(π/4)  x arctan(2x+1)dx by parts  I = [ (x^2 /2)arctan(2x+1)]_0 ^(π/4)  − ∫_0 ^(π/4)  (x^2 /2) (2/(1 +(2x+1)^2 ))dx  =(π^2 /(32))arctan((π/2)+1) −∫_0 ^(π/4)      (x^2 /(1+(2x+1)^2 ))dx let   calculate J= ∫_0 ^(π/4)    (x^2 /(1+(2x+1)^2 ))dx  J =_(2x+1=u)    ∫_1 ^((π/2)+1)    (((((u−1)/2))^2 )/(1+u^2 )) (du/2)  = (1/8) ∫_1 ^((π/2)+1)      ((u^2  −2u +1)/(1+u^2 ))du  8J = ∫_1 ^((π/2)+1)    (1  −((2u)/(1+u^2 )))du  = (π/2) −[ ln(1+u^2 )]_1 ^((π/2)+1)   =(π/2) −{ ln(1+((π/2)+1)^2 ) −ln(2)} ⇒  J = (π/(16)) −(1/8){ln(1+((π/2)+1)^2 ) −ln(2)} so  I = (π^2 /(32)) arctan((π/2)+1) −(π/(16)) +(1/8){ln(1+((π/2)+1)^2 )−ln(2)}

letputI=0π4xarctan(2x+1)dxbypartsI=[x22arctan(2x+1)]0π40π4x2221+(2x+1)2dx=π232arctan(π2+1)0π4x21+(2x+1)2dxletcalculateJ=0π4x21+(2x+1)2dxJ=2x+1=u1π2+1(u12)21+u2du2=181π2+1u22u+11+u2du8J=1π2+1(12u1+u2)du=π2[ln(1+u2)]1π2+1=π2{ln(1+(π2+1)2)ln(2)}J=π1618{ln(1+(π2+1)2)ln(2)}soI=π232arctan(π2+1)π16+18{ln(1+(π2+1)2)ln(2)}

Answered by ajfour last updated on 23/May/18

I=(x^2 /2)tan^(−1) (2x+1)∣_0 ^(π/4) −∫_0 ^(  π/4)  ((x^2 /2))[(2/(1+(2x+1)^2 ))]dx   =(π^2 /(32))tan^(−1) (1+(π/2))−I_1   I_1 =(1/4)∫_0 ^(  π/4) ((1+(2x+1)^2 −2(2x+1))/(1+(2x+1)^2 ))dx      =(x/4)∣_0 ^(π/4) −(1/4)∫_( 2) ^(  1+(1+(π/2))^2 )  (dt/t)     =(π/(16))−(1/4)ln [(1/2)+(((π+2)^2 )/8)]        I = (π^2 /(32))tan^(−1) (1+(π/2))−(π/(16))                         +(1/4)ln [(1/2)+(((π+2)^2 )/8)] .

I=x22tan1(2x+1)0π/40π/4(x22)[21+(2x+1)2]dx=π232tan1(1+π2)I1I1=140π/41+(2x+1)22(2x+1)1+(2x+1)2dx=x40π/41421+(1+π2)2dtt=π1614ln[12+(π+2)28]I=π232tan1(1+π2)π16+14ln[12+(π+2)28].

Terms of Service

Privacy Policy

Contact: info@tinkutara.com