Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 79763 by mathmax by abdo last updated on 28/Jan/20

calculate ∫_0 ^π {cos^8 x +sin^8 x}dx

calculate0π{cos8x+sin8x}dx

Commented by john santu last updated on 28/Jan/20

cos^8 x+sin^8 x=(sin^4 x)^2 +(cos^4 x)^2   = (sin^4 x+cos^4 x)^2 −2sin^4 xcos^4 x  = {(sin^2 x+cos^2 x)^2 −2sin^2 xcos^2 x}^2 −(1/2)sin^2 (2x)  = {1−(1/2)sin^2 (2x)}^2 −(1/2)sin^2 (2x)  =1−(3/2)sin^2 (2x)+(1/4)sin^4 (2x)  =1−(3/2)((1/2)−(1/2)cos (4x))+(1/4){(1/2)−(1/2)cos (4x)}^2   =(1/4)+(3/4)cos (4x)+(1/4){(1/4)−(1/2)cos (4x)+(1/4)cos^2 (4x)}  = (5/(16))+(5/8)cos (4x)+(1/(16))((1/2)+(1/2)cos (8x))  = ((11)/(32))+(5/8)cos (4x)+(1/(32))cos (8x)

cos8x+sin8x=(sin4x)2+(cos4x)2=(sin4x+cos4x)22sin4xcos4x={(sin2x+cos2x)22sin2xcos2x}212sin2(2x)={112sin2(2x)}212sin2(2x)=132sin2(2x)+14sin4(2x)=132(1212cos(4x))+14{1212cos(4x)}2=14+34cos(4x)+14{1412cos(4x)+14cos2(4x)}=516+58cos(4x)+116(12+12cos(8x))=1132+58cos(4x)+132cos(8x)

Commented by john santu last updated on 28/Jan/20

∫_0 ^π  (((11)/(32))+(5/8)cos (4x)+(1/(32))cos (8x))dx=  ((11x)/(32))+(5/(32))sin (4x)+(1/(256))sin (8x)∣_0 ^π   = ((11π)/(32)) ★

π0(1132+58cos(4x)+132cos(8x))dx=11x32+532sin(4x)+1256sin(8x)π0=11π32

Answered by Henri Boucatchou last updated on 28/Jan/20

we  have  cos^8 x+sin^8 x=1−(8/8)sin^2 2x  =cos^2 2x=(1/4)(e^(i2x) +e^(−i2x) )^2   =(1/4)[(e^(i4x) +e^(−i4x) )+2]=(1/4)(2cos4x+2)  ⇒ ∫_0 ^( π) (cos^8 x+sin^8 x)dx=(1/2)[(1/4)sin4x+2x]_0 ^π   =(1/2)(2π)  =π

wehavecos8x+sin8x=188sin22x=cos22x=14(ei2x+ei2x)2=14[(ei4x+ei4x)+2]=14(2cos4x+2)0π(cos8x+sin8x)dx=12[14sin4x+2x]0π=12(2π)=π

Commented by john santu last updated on 28/Jan/20

how to get sin^8 x+cos^8 x=1−(8/8)sin^2 2x?  it impossible

howtogetsin8x+cos8x=188sin22x?itimpossible

Commented by john santu last updated on 28/Jan/20

a^4 +b^4 =(a+b)^4 −2ab(2a^2 −3ab−2b^2 )  put a=cos^2 x, b = sin^2 x  cos^8 x+sin^8 x=1−(1/2).4sin^2 xcos^2 x(2(cos^2 x−sin^2 x)−(3/4).4sin^2 xcos^2 x)  = 1−(1/2)sin^2 (2x)(2cos (2x)−(3/4)sin^2 (2x))  = 1−(1/4)sin (4x)sin (2x)+(3/8)sin^4 (2x)

a4+b4=(a+b)42ab(2a23ab2b2)puta=cos2x,b=sin2xcos8x+sin8x=112.4sin2xcos2x(2(cos2xsin2x)34.4sin2xcos2x)=112sin2(2x)(2cos(2x)34sin2(2x))=114sin(4x)sin(2x)+38sin4(2x)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com