All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 76779 by mathmax by abdo last updated on 30/Dec/19
calculate∫0πx2cosx3+sin2xdx
Commented by mathmax by abdo last updated on 10/Jan/20
letA=∫0πx2cosx3+sin2xdxchangementtan(x2)=tgiveA=∫0∞4arctan2(t)×1−t21+t23+4t2(1+t2)2×2dt1+t2=8∫0∞(1−t2)arctan2t(1+t2)2(3+4t2(1+t2)2)dt=8∫0∞(1−t2)arctan2t3(t2+1)2+4t2dt=8∫0∞(1−t2)(arctant)23(t4+2t2+1)+4t2=8∫0∞(1−t2)(arctant)23t4+10t2+3dtletsolve3t4+10t2+3=0⇒3u4+10u+3=0→Δ′=52−9=16⇒u1=−5+43=−13u2=−5−43=−3⇒3t4+10t2+3=3(t2+13)(t2+3)⇒A=8∫0∞(1−t2)(arctant)23(t2+13)(t2+3)dt⇒34A=∫−∞∞(1−t2)(arctant)2(t2+13)(t2+3)dtletW(z)=(1−z2)(arctanz)2(z2+13)(z2+3)⇒W(z)=(1−z2)(arctanz)2(z−i3)(z+i3)(z−i3)(z+i3)residustheoremgive∫−∞+∞W(z)dz=2iπ{Res(W,i3)+Res(W,i3)}...becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com