Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 76779 by mathmax by abdo last updated on 30/Dec/19

calculate ∫_0 ^π   ((x^2 cosx)/(3+sin^2 x))dx

calculate0πx2cosx3+sin2xdx

Commented by mathmax by abdo last updated on 10/Jan/20

let A =∫_0 ^π  ((x^2  cosx)/(3+sin^2 x))dx  changement tan((x/2))=t give  A =∫_0 ^∞   ((4 arctan^2 (t)×((1−t^2 )/(1+t^2 )))/(3+((4t^2 )/((1+t^2 )^2 ))))×((2dt)/(1+t^2 )) =8 ∫_0 ^∞   (((1−t^2 )arctan^2 t)/((1+t^2 )^2 (3+((4t^2 )/((1+t^2 )^2 )))))dt  =8 ∫_0 ^∞  (((1−t^2 )arctan^2 t)/(3(t^2  +1)^2  +4t^2 ))dt =8 ∫_0 ^∞   (((1−t^2 )(arctant)^2 )/(3(t^4  +2t^2  +1)+4t^2 ))  =8 ∫_0 ^∞   (((1−t^2 )(arctant)^2 )/(3t^4  +10t^2  +3))dt let solve 3t^4  +10t^2  +3=0  ⇒3u^4  +10u +3=0 →Δ^′ =5^2 −9 =16 ⇒u_1 =((−5+4)/3) =−(1/3)  u_2 =((−5−4)/3) =−3 ⇒3t^4  +10t^2  +3 =3(t^2 +(1/3))(t^2  +3) ⇒  A =8 ∫_0 ^∞   (((1−t^2 )(arctant)^2 )/(3(t^2  +(1/3))(t^2  +3)))dt ⇒  (3/4) A =∫_(−∞) ^∞   (((1−t^2 )(arctant)^2 )/((t^2  +(1/3))(t^2  +3)))dt letW(z)=(((1−z^2  )(arctanz)^2 )/((z^2  +(1/3))(z^2  +3))) ⇒  W(z) =(((1−z^2 )(arctanz)^2 )/((z−(i/(√3)))(z+(i/(√3)))(z−i(√3))(z+i(√3))))  residus theorem give  ∫_(−∞) ^(+∞)   W(z)dz =2iπ{ Res(W,(i/(√3)))+Res(W,i(√3))}  ...be continued...

letA=0πx2cosx3+sin2xdxchangementtan(x2)=tgiveA=04arctan2(t)×1t21+t23+4t2(1+t2)2×2dt1+t2=80(1t2)arctan2t(1+t2)2(3+4t2(1+t2)2)dt=80(1t2)arctan2t3(t2+1)2+4t2dt=80(1t2)(arctant)23(t4+2t2+1)+4t2=80(1t2)(arctant)23t4+10t2+3dtletsolve3t4+10t2+3=03u4+10u+3=0Δ=529=16u1=5+43=13u2=543=33t4+10t2+3=3(t2+13)(t2+3)A=80(1t2)(arctant)23(t2+13)(t2+3)dt34A=(1t2)(arctant)2(t2+13)(t2+3)dtletW(z)=(1z2)(arctanz)2(z2+13)(z2+3)W(z)=(1z2)(arctanz)2(zi3)(z+i3)(zi3)(z+i3)residustheoremgive+W(z)dz=2iπ{Res(W,i3)+Res(W,i3)}...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com