All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 63033 by mathmax by abdo last updated on 28/Jun/19
calculate∫0∞sin2(x)x2(1+x2)dx
Commented by mathmax by abdo last updated on 28/Jun/19
letA=∫0∞sin2xx2(1+x2)dx⇒A=∫0∞sin2x{1x2−11+x2}dx=∫0∞sin2xx2dx−∫0∞sin2x1+x2dx=H−KbypartsH=[−1xsin2x]0+∞−∫0∞−1x2sinxcosxdx=∫0∞sin(2x)xdx=2x=t∫0∞sin(t)t2dt2=∫0∞sinttdt=π2(resultproved)K=∫0∞1−cos(2x)2(1+x2)dx=12∫0∞dx1+x2−12∫0∞cos(2x)1+x2dx=π4−14∫−∞+∞cos(2x)1+x2dx∫−∞+∞cos(2x)1+x2dx=Re(∫−∞+∞ei2xx2+1dx)letW(z)=ei2zz2+1thepolesofWare+−iresidustheoremgive∫−∞+∞W(z)dz=2iπRes(W,i)=2iπe−22i=πe2⇒∫−∞+∞cos(2x)1+x2dx=πe2⇒K=π4−π4e2⇒A=π2−π4+π4e2=π4+π4e2⇒A=π4(1+1e2).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com