Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63033 by mathmax by abdo last updated on 28/Jun/19

calculate ∫_0 ^∞   ((sin^2 (x))/(x^2 (1+x^2 )))dx

calculate0sin2(x)x2(1+x2)dx

Commented by mathmax by abdo last updated on 28/Jun/19

let A =∫_0 ^∞   ((sin^2 x)/(x^2 (1+x^2 ))) dx ⇒ A =∫_0 ^∞  sin^2 x{(1/x^2 ) −(1/(1+x^2 ))}dx  =∫_0 ^∞  ((sin^2 x)/x^2 )dx −∫_0 ^∞ ((sin^2 x)/(1+x^2 ))dx =H−K  by parts H =[−(1/x)sin^2 x]_0 ^(+∞)  −∫_0 ^∞   −(1/x)2sinx cosxdx  =∫_0 ^∞     ((sin(2x))/x)dx =_(2x=t)      ∫_0 ^∞    ((sin(t))/(t/2)) (dt/2) =∫_0 ^∞  ((sint)/t)dt =(π/2)  (result proved)  K =∫_0 ^∞    ((1−cos(2x))/(2(1+x^2 )))dx =(1/2)∫_0 ^∞   (dx/(1+x^2 )) −(1/2)∫_0 ^∞   ((cos(2x))/(1+x^2 ))dx  =(π/4) −(1/4)∫_(−∞) ^(+∞)    ((cos(2x))/(1+x^2 ))dx  ∫_(−∞) ^(+∞)  ((cos(2x))/(1+x^2 ))dx =Re(∫_(−∞) ^(+∞)   (e^(i2x) /(x^2  +1))dx) let W(z) =(e^(i2z) /(z^2  +1)) the poles of W are +^− i  residus theorem give  ∫_(−∞) ^(+∞)   W(z)dz =2iπ Res(W,i) =2iπ (e^(−2) /(2i))  =(π/e^2 ) ⇒ ∫_(−∞) ^(+∞)  ((cos(2x))/(1+x^2 ))dx =(π/e^2 ) ⇒  K =(π/4)−(π/(4e^2 )) ⇒ A =(π/2) −(π/4) +(π/(4e^2 )) =(π/4) +(π/(4e^2 ))  ⇒  A =(π/4)(1+(1/e^2 )).

letA=0sin2xx2(1+x2)dxA=0sin2x{1x211+x2}dx=0sin2xx2dx0sin2x1+x2dx=HKbypartsH=[1xsin2x]0+01x2sinxcosxdx=0sin(2x)xdx=2x=t0sin(t)t2dt2=0sinttdt=π2(resultproved)K=01cos(2x)2(1+x2)dx=120dx1+x2120cos(2x)1+x2dx=π414+cos(2x)1+x2dx+cos(2x)1+x2dx=Re(+ei2xx2+1dx)letW(z)=ei2zz2+1thepolesofWare+iresidustheoremgive+W(z)dz=2iπRes(W,i)=2iπe22i=πe2+cos(2x)1+x2dx=πe2K=π4π4e2A=π2π4+π4e2=π4+π4e2A=π4(1+1e2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com