All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 42809 by maxmathsup by imad last updated on 02/Sep/18
calculate∫0∞tdt(1+t4)2
Commented by prof Abdo imad last updated on 03/Sep/18
letA=∫0∞tdt(1+t4)2changementt2=xgive2tdt=dx⇒A=∫0∞dx2(1+x2)2=x=tanθ12∫0π21+tan2θ(1+tan2θ)2dθ=12∫0π2cos2θdθ=14∫0π2(1+cos(2θ))dθ=π8+18[sin(2θ)]0π2=π8+0⇒A=π8.
Answered by sma3l2996 last updated on 03/Sep/18
A=∫0∞tdt(1+t4)2t2=x⇒dx=2tdtA=12∫0∞dx(1+x2)2bypartsu=1(1+x2)2⇒u′=−2×2x(1+x2)v=1⇒v′=xA=12[x(1+x2)2]0∞+2∫0∞x21+x2dx=2∫0∞(1−11+x2)dxA=2[x−tan−1(x)]0∞A=+∞
Terms of Service
Privacy Policy
Contact: info@tinkutara.com