Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 46847 by maxmathsup by imad last updated on 01/Nov/18

calculate  ∫∫_(0≤x≤1 and 1≤y≤2)   e^(x/y) dxdy

calculate0x1and1y2exydxdy

Commented by maxmathsup by imad last updated on 04/Nov/18

I =∫_1 ^2  (∫_0 ^1  e^(x/y) dx)dy  but ∫_0 ^1  e^(x/y)  dx =[y e^(x/y) ]_(x=0) ^(x =1) = y(e^(1/y) −1)  ⇒  I =∫_1 ^2  (y e^(1/y) )dy −∫_1 ^2 ydy  but ∫_1 ^2 ydy =[(y^2 /2)]_1 ^2  =2−(1/2) =(3/2) and  ∫_1 ^2  y e^(1/y) dy =_((1/y)=t)   ∫_(1/2) ^1  (1/t) e^t  (dt/t^2 ) =∫_(1/2) ^1  (e^t /t^3 )dt  =∫_(1/2) ^1  t^(−3)  e^t  dt   =[−(1/2) t^(−2)  e^t ]_(1/2) ^1   +∫_(1/2) ^1  (1/2) t^(−2)  e^t dt  =(1/2){ 4 e^(1/2) −e}  +(1/2){ [−(1/t) e^t ]_(1/2) ^1  +∫_(1/2) ^1   (1/t) e^t dt}  2(√e)−(e/2) +(1/2){2(√e)−e + ∫_(1/2) ^1  (e^t /t) dt}  =3(√e)−e  +(1/2) ∫_(1/2) ^1  (e^t /t) dt  and  ∫_(1/2) ^1  (e^t /t) dt =∫_(1/2) ^1  (1/t)(Σ_(n=0) ^∞  (t^n /(n!)))dt  =∫_(1/2) ^1  (1/t)(1+Σ_(n=1) ^∞  (t^n /(n!)))dt =ln(2) +Σ_(n=1) ^∞  (1/(n!)) ∫_(1/2) ^1  t^(n−1) dt  =ln(2)+Σ_(n=1) ^∞  (1/(n.(n!)))(1−(1/2^n )) ...be continued...

I=12(01exydx)dybut01exydx=[yexy]x=0x=1=y(e1y1)I=12(ye1y)dy12ydybut12ydy=[y22]12=212=32and12ye1ydy=1y=t1211tetdtt2=121ett3dt=121t3etdt=[12t2et]121+12112t2etdt=12{4e12e}+12{[1tet]121+1211tetdt}2ee2+12{2ee+121ettdt}=3ee+12121ettdtand121ettdt=1211t(n=0tnn!)dt=1211t(1+n=1tnn!)dt=ln(2)+n=11n!121tn1dt=ln(2)+n=11n.(n!)(112n)...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com