All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36202 by prof Abdo imad last updated on 30/May/18
calculate∫0∞x2dx(x2+1)3
Commented by math khazana by abdo last updated on 18/Aug/18
letA=∫0∞x2(x2+1)3dx2A=∫−∞+∞x2(x2+1)3dxletconsiderthecomplexfunctionφ(z)=z2(z2+1)3wehaveφ(z)=z2(z−i)3(z+i)3sothepolesofφareiand−i(triples)⇒∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(3−1)!{(z−i)3φ(z)}(2)=12limz→i{z2(z+i)3}(2)=12limz→i{2z(z+i)3−3(z+i)2z2(z+i)6}(1)=12limz→i{2z(z+i)−3z2(z+i)4}(1)=12limz→i{−z2+2iz(z+i)4}(1)=12limz→i{(−2z+2i)(z+i)4−4(z+i)3(−z2+2iz)(z+i)8}=12limz→i(−2z+2i)(z+i)−4(−z2+2iz)(z+i)5=12−4(1−2)(2i)5=225i=1i24=116i⇒∫−∞+∞φ(z)dz=2iπ116i=π8=2A⇒A=π16.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com