Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36202 by prof Abdo imad last updated on 30/May/18

calculate ∫_0 ^∞    ((x^2 dx)/((x^2 +1)^3 ))

calculate0x2dx(x2+1)3

Commented by math khazana by abdo last updated on 18/Aug/18

let A = ∫_0 ^∞   (x^2 /((x^2 +1)^3 )) dx  2A = ∫_(−∞) ^(+∞)    (x^2 /((x^2  +1)^3 ))dx let consider the complex  function ϕ(z) =(z^2 /((z^2  +1)^3 ))  we have   ϕ(z) =(z^2 /((z−i)^3 (z+i)^3 ))  so the poles of ϕ are i and −i  (triples) ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i)  (1/((3−1)!))  { (z−i)^3  ϕ(z)}^((2))   =(1/2)lim_(z→i)     { (z^2 /((z+i)^3 ))}^((2))   =(1/2) lim_(z→i)  {    ((2z(z+i)^3  −3(z+i)^2 z^2 )/((z+i)^6 ))}^((1))   =(1/2)lim_(z→i)   {  ((2z(z+i)−3z^2 )/((z+i)^4 ))}^((1))   =(1/2)lim_(z→i)  {  ((−z^2  +2iz)/((z+i)^4 ))}^((1))   =(1/2)lim_(z→i)  { (((−2z+2i)(z+i)^4  −4(z+i)^3 (−z^2  +2iz))/((z+i)^8 ))}  =(1/2)lim_(z→i) (((−2z+2i)(z+i)−4(−z^2  +2iz))/((z+i)^5 ))  =(1/2)  ((−4(1−2))/((2i)^5 )) = (2/(2^5 i)) =(1/(i 2^4 )) =(1/(16i)) ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ (1/(16i))  =(π/8) =2A ⇒  A =(π/(16)) .

letA=0x2(x2+1)3dx2A=+x2(x2+1)3dxletconsiderthecomplexfunctionφ(z)=z2(z2+1)3wehaveφ(z)=z2(zi)3(z+i)3sothepolesofφareiandi(triples)+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(31)!{(zi)3φ(z)}(2)=12limzi{z2(z+i)3}(2)=12limzi{2z(z+i)33(z+i)2z2(z+i)6}(1)=12limzi{2z(z+i)3z2(z+i)4}(1)=12limzi{z2+2iz(z+i)4}(1)=12limzi{(2z+2i)(z+i)44(z+i)3(z2+2iz)(z+i)8}=12limzi(2z+2i)(z+i)4(z2+2iz)(z+i)5=124(12)(2i)5=225i=1i24=116i+φ(z)dz=2iπ116i=π8=2AA=π16.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com