Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33027 by prof Abdo imad last updated on 09/Apr/18

calculate ∫_0 ^∞   (x^3 /(1+x^5 ))dx.

calculate0x31+x5dx.

Answered by Joel578 last updated on 14/Apr/18

I = ∫_0 ^∞  (x^3 /(1 + x^5 )) dx  u = x^5   →  du = 5x^4  dx    I = (1/5)∫_0 ^∞  (x^(−1) /(1 + u)) du = (1/5) ∫_0 ^∞  (u^(−(1/5)) /(1 + u)) du     = (1/5) ∫_0 ^∞  (u^((4/5) − 1) /(1 + u)) du     (∫_0 ^∞  (t^(a − 1) /(1 + t)) dt = (π/(sin (πa))))     = (π/(5sin (((4π)/5))))     = ((4π)/(5(√(10 − 2(√5))))) ≈ 1.07

I=0x31+x5dxu=x5du=5x4dxI=150x11+udu=150u151+udu=150u4511+udu(0ta11+tdt=πsin(πa))=π5sin(4π5)=4π510251.07

Commented by Joel578 last updated on 10/Apr/18

sin (((4π)/5)) = sin ((π/5)) = (1/4)(√(10 − 2(√5)))

sin(4π5)=sin(π5)=141025

Terms of Service

Privacy Policy

Contact: info@tinkutara.com