All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 64904 by mathmax by abdo last updated on 23/Jul/19
calculate∫12∫0x1(x2+y2)32dydx
Commented by ~ À ® @ 237 ~ last updated on 23/Jul/19
ledomainedintegrationD={(x.y)/1<x<20<y<x}enposantx=uety=utanvonaJ(xy)=utanv(1+tan2v)D={(u.utanv)/1<u<2et0<tanv<1}={(u.utanv)/1<u<2et0<v<π4}onobtientalorsI=∫12∫0π4utanv(1+tan2v)dudv((u2+u2tan2v))3=∫121u2du∫0π4tanv(1+tan2v)dv(1+tan2v)32Missing \left or extra \rightMissing \left or extra \right==(2−2)4
Commented by mathmax by abdo last updated on 23/Jul/19
thankyousir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com