Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64904 by mathmax by abdo last updated on 23/Jul/19

calculate ∫_1 ^2  ∫_0 ^x   (1/((x^2  +y^2 )^(3/2) ))dydx

calculate120x1(x2+y2)32dydx

Commented by ~ À ® @ 237 ~ last updated on 23/Jul/19

le domaine d integration D ={(x .  y)  / 1<x<2    0<y<x}  en posant x=u et y=utanv     on a J(x  y)=utanv(1+tan^2 v)  D={(u. utanv)/ 1<u<2  et 0<tanv<1}     ={(u. utanv)/  1<u<2 et 0<v<(π/4) }  on obtient alors   I= ∫_1 ^2 ∫_0 ^(π/4)  ((utanv(1+tan^2 v)dudv)/(((√((u^2 +u^2 tan^2 v))))^3 ))    =∫_1 ^2 (1/u^2 )du  ∫_0 ^(π/4) ((tanv(1+tan^2 v)dv)/((1+tan^2 v)^(3/2) ))    =[−(1/u)]_1 ^2  [(1/2) ((−1)/(((3/2)−1)(1+tan^2 v)^(((3/2)−1)) ))]_0 ^(π/4)   =  = (((2−(√2)))/4)

ledomainedintegrationD={(x.y)/1<x<20<y<x}enposantx=uety=utanvonaJ(xy)=utanv(1+tan2v)D={(u.utanv)/1<u<2et0<tanv<1}={(u.utanv)/1<u<2et0<v<π4}onobtientalorsI=120π4utanv(1+tan2v)dudv((u2+u2tan2v))3=121u2du0π4tanv(1+tan2v)dv(1+tan2v)32Missing \left or extra \right==(22)4

Commented by mathmax by abdo last updated on 23/Jul/19

thank you sir.

thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com