All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 42802 by maxmathsup by imad last updated on 02/Sep/18
calculate∫1254x32+x−x2dx
Commented by maxmathsup by imad last updated on 05/Sep/18
letA=∫1254x32+x−x2dx⇒A=∫1254x3−x2+x+2dxwehave−x2+x+2=−(x2−x−2)=−(x2−212x+14−14−2)=−{(x−12)2−94}=94−(x−12)2⇒A=∫1254x394−(x−12)2dx=x−12=32sint∫0π6(12+32sint)332cost32costdt=∫0π6(3sint+1)3dt=∫0π6(27sin3t+27sin2t+9sint+1)dt=27∫0π6sin3tdt+27∫0π6sin2tdt+9∫0π6sintdt+π6but∫0π6sintdt=[−cost]0π6=1−32∫0π6sin2tdt=12∫0π6(1−cos(2t))dt=π12−14[sin(2t)]0π6=π12−1432=π12−38wehavesin3t={eit−e−it2i}3=−18i{∑k=03C3keikt(−1)3−ke−i(3−k)t}=i8{−e−i3t+3eite−i2t−3ei2te−it+ei3t}=i8{ei3t−e−i3t−3(eit−e−it)}=i8{2isin(3t)−6isin(t)}=−14sin(3t)+34sin(t)⇒∫0π6sin3tdt=34∫0π6sin(t)dt−14∫0π6sin(3t)dt=−34[cost]0π6+112[cos(3t)]0π6=−34(32−1)+112(−1)=34−338−112sothevalueofAisknown.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com