Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42802 by maxmathsup by imad last updated on 02/Sep/18

calculate  ∫_(1/2) ^(5/4)    (x^3 /(√(2+x−x^2 )))dx

calculate1254x32+xx2dx

Commented by maxmathsup by imad last updated on 05/Sep/18

let A = ∫_(1/2) ^(5/4)        (x^3 /(√(2+x−x^2 )))dx⇒A = ∫_(1/2) ^(5/4)    (x^3 /(√(−x^2 +x+2)))dx  we have −x^2  +x+2 =−(x^2 −x−2) =−(x^2 −2(1/2)x +(1/4)−(1/4)−2)  =−{(x−(1/2))^2 −(9/4)}=(9/4) −(x−(1/2))^2  ⇒A = ∫_(1/2) ^(5/4)      (x^3 /(√((9/4)−(x−(1/2))^2 )))dx  =_(x−(1/2) =(3/2)sint)      ∫_0 ^(π/6)      ((((1/2)+(3/2)sint)^3 )/((3/2) cost)) (3/2) cost dt  = ∫_0 ^(π/6)  (3sint +1)^3  dt  =∫_0 ^(π/6)   (27sin^3 t   +27sin^2 t +9sint +1)dt  =27 ∫_0 ^(π/6)  sin^3 t dt +27 ∫_0 ^(π/6)  sin^2 t dt  +9 ∫_0 ^(π/6)  sint dt +(π/6) but  ∫_0 ^(π/6)  sint dt =[−cost]_0 ^(π/6)  =1−((√3)/2)  ∫_0 ^(π/6)  sin^2 t dt =(1/2) ∫_0 ^(π/6)  (1−cos(2t))dt=(π/(12)) −(1/4)[sin(2t)]_0 ^(π/6)   =(π/(12)) −(1/4) ((√3)/2) =(π/(12)) −((√3)/8)  we have sin^3 t ={((e^(it) −e^(−it) )/(2i))}^3   =−(1/(8i)){  Σ_(k=0) ^3  C_3 ^k   e^(ikt)   (−1)^(3−k)  e^(−i(3−k)t) }  =(i/8){  −e^(−i3t)   +3 e^(it)  e^(−i2t)  − 3 e^(i2t)  e^(−it)   +e^(i3t) }  =(i/8){e^(i3t)  −e^(−i3t)  −3(e^(it) −e^(−it) )} =(i/8){2i sin(3t) −6i sin(t)}  =−(1/4)sin(3t) +(3/4) sin(t) ⇒ ∫_0 ^(π/6)  sin^3 t dt =(3/4) ∫_0 ^(π/6)  sin(t)dt−(1/4) ∫_0 ^(π/6)  sin(3t)dt  =−(3/4)[cost]_0 ^(π/6)    +(1/(12))[ cos(3t)]_0 ^(π/6)   =−(3/4)(((√3)/2)−1) +(1/(12))( −1)  =(3/4) −((3(√3))/8) −(1/(12))   so the value of A is known .

letA=1254x32+xx2dxA=1254x3x2+x+2dxwehavex2+x+2=(x2x2)=(x2212x+14142)={(x12)294}=94(x12)2A=1254x394(x12)2dx=x12=32sint0π6(12+32sint)332cost32costdt=0π6(3sint+1)3dt=0π6(27sin3t+27sin2t+9sint+1)dt=270π6sin3tdt+270π6sin2tdt+90π6sintdt+π6but0π6sintdt=[cost]0π6=1320π6sin2tdt=120π6(1cos(2t))dt=π1214[sin(2t)]0π6=π121432=π1238wehavesin3t={eiteit2i}3=18i{k=03C3keikt(1)3kei(3k)t}=i8{ei3t+3eitei2t3ei2teit+ei3t}=i8{ei3tei3t3(eiteit)}=i8{2isin(3t)6isin(t)}=14sin(3t)+34sin(t)0π6sin3tdt=340π6sin(t)dt140π6sin(3t)dt=34[cost]0π6+112[cos(3t)]0π6=34(321)+112(1)=34338112sothevalueofAisknown.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com