Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35675 by abdo imad last updated on 21/May/18

calculate  ∫_1 ^3    (x/(e^x  −1))dx ..

calculate13xex1dx..

Commented by prof Abdo imad last updated on 25/May/18

I  = ∫_1 ^3   ((x e^(−x) )/(1−e^(−x) ))dx =∫_1 ^3 ( Σ_(n=0) ^∞  e^(−nx) )x e^(−x)  dx  = Σ_(n=0) ^∞     ∫_1 ^3   x e^(−(n+1)x)  dx = Σ_(n=0) ^∞  A_n   with  A_n  = ∫_1 ^3   x.e^(−(n+1)x) dx  .changement (n+1)x=t  give A_n  =∫_(n+1) ^(3(n+1))   (t/(n+1)) e^(−t)    (dt/(n+1))  = (1/((n+1)^2 )) ∫_(n+1) ^(3(n+1))   t^  e^(−t)  dt  by parts  ∫_(n+1) ^(3(n+1))   t e^(−t)  dt = [ −t e^(−t) ]_(n+1) ^(3(n+1))  +∫_(n+1) ^(3(n+1))   e^(−t) dt  = (n+1)e^(−(n+1))  −3(n+1) e^(−3(n+1))    +[ −e^(−t) ]_(n+1) ^(3(n+1))   =(n+1) e^(−(n+1))  −3(n+1) e^(−3(n+1))  +e^(−(n+1))  −e^(−3(n+1))   A_n   = (e^(−(n+1)) /(n+1)) −3(e^(−3(n+1)) /(n+1))  + (e^(−(n+1)) /((n+1)^2 )) −(e^(−3(n+1)) /((n+1)^2 ))  Σ_(n=0) ^∞  A_n  = Σ_(n=0) ^∞    (e^(−(n+1)) /(n+1)) −3 Σ_(n=0) ^∞  (e^(−3(n+1)) /(n+1))  + Σ_(n=0) ^∞    (e^(−(n+1)) /((n+1)^2 ))  −Σ_(n=0) ^∞    (e^(−3(n+1)) /((n+1)^2 ))  = Σ_(n=1) ^∞   (e^(−n) /n)  −3 Σ_(n=1) ^∞   (e^(−3n) /n)  +Σ_(n=1) ^∞   (e^(−n) /n^2 )  −Σ_(n=1) ^∞    (e^(−3n) /n^2 )    ....be continued....

I=13xex1exdx=13(n=0enx)xexdx=n=013xe(n+1)xdx=n=0AnwithAn=13x.e(n+1)xdx.changement(n+1)x=tgiveAn=n+13(n+1)tn+1etdtn+1=1(n+1)2n+13(n+1)tetdtbypartsn+13(n+1)tetdt=[tet]n+13(n+1)+n+13(n+1)etdt=(n+1)e(n+1)3(n+1)e3(n+1)+[et]n+13(n+1)=(n+1)e(n+1)3(n+1)e3(n+1)+e(n+1)e3(n+1)An=e(n+1)n+13e3(n+1)n+1+e(n+1)(n+1)2e3(n+1)(n+1)2n=0An=n=0e(n+1)n+13n=0e3(n+1)n+1+n=0e(n+1)(n+1)2n=0e3(n+1)(n+1)2=n=1enn3n=1e3nn+n=1enn2n=1e3nn2....becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com