All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35675 by abdo imad last updated on 21/May/18
calculate∫13xex−1dx..
Commented by prof Abdo imad last updated on 25/May/18
I=∫13xe−x1−e−xdx=∫13(∑n=0∞e−nx)xe−xdx=∑n=0∞∫13xe−(n+1)xdx=∑n=0∞AnwithAn=∫13x.e−(n+1)xdx.changement(n+1)x=tgiveAn=∫n+13(n+1)tn+1e−tdtn+1=1(n+1)2∫n+13(n+1)te−tdtbyparts∫n+13(n+1)te−tdt=[−te−t]n+13(n+1)+∫n+13(n+1)e−tdt=(n+1)e−(n+1)−3(n+1)e−3(n+1)+[−e−t]n+13(n+1)=(n+1)e−(n+1)−3(n+1)e−3(n+1)+e−(n+1)−e−3(n+1)An=e−(n+1)n+1−3e−3(n+1)n+1+e−(n+1)(n+1)2−e−3(n+1)(n+1)2∑n=0∞An=∑n=0∞e−(n+1)n+1−3∑n=0∞e−3(n+1)n+1+∑n=0∞e−(n+1)(n+1)2−∑n=0∞e−3(n+1)(n+1)2=∑n=1∞e−nn−3∑n=1∞e−3nn+∑n=1∞e−nn2−∑n=1∞e−3nn2....becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com