Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36182 by prof Abdo imad last updated on 30/May/18

calculate  ∫_1 ^(+∞)    (dt/(t(√(1+t^2 ))))

calculate1+dtt1+t2

Commented by maxmathsup by imad last updated on 15/Aug/18

let I  = ∫_1 ^(+∞)    (dt/(t(√(1+t^2 )))) dt  changement t =sh(x) give  I = ∫_(argsh(1)) ^(+∞)    (1/(sh(x)ch(x))) ch(x)dx = ∫_(ln(1+(√2))) ^(+∞)     (dx/(sh(x)))  = ∫_(ln(1+(√2))) ^(+∞)    ((2dx)/(e^x  −e^(−x) ))  = ∫_(ln(1+(√2))) ^(+∞)   ((2 e^x )/(e^(2x) −1))dx =_(e^x  =u)   ∫_(1+(√2)) ^(+∞)    ((2u)/(u^2 −1)) (du/u)  = ∫_(1+(√2)) ^(+∞)    ((2du)/(u^2 −1)) = ∫_(1+(√2)) ^(+∞)   (  (1/(u−1)) −(1/(u+1)))du  =[ln∣((u−1)/(u+1))∣]_(1+(√2)) ^(+∞)   =−ln∣ ((√2)/(2+(√2))) ∣ =−ln(((√2)/(√(2(1+(√2))))))=ln(1+(√2)) ⇒  I =ln(1+(√2)) .

letI=1+dtt1+t2dtchangementt=sh(x)giveI=argsh(1)+1sh(x)ch(x)ch(x)dx=ln(1+2)+dxsh(x)=ln(1+2)+2dxexex=ln(1+2)+2exe2x1dx=ex=u1+2+2uu21duu=1+2+2duu21=1+2+(1u11u+1)du=[lnu1u+1]1+2+=ln22+2=ln(22(1+2))=ln(1+2)I=ln(1+2).

Answered by sma3l2996 last updated on 31/May/18

L=∫_1 ^(+∞) (dt/(t(√(1+t^2 ))))  let  t=sinhx⇒dt=coshxdx  L=∫_(ln((√2)+1)) ^(+∞) ((coshx)/(sinhx(√(1+sinh^2 x))))dx  =∫_(ln((√2)+1)) ^(+∞) (dx/(sinh(x)))=2∫_(ln((√2)+1)) ^(+∞) (e^x /(e^(2x) −1))dx  u=e^x ⇒du=e^x dx  L=2∫_((√2)+1) ^(+∞) (du/(u^2 −1))=2∫_((√2)+1) ^(+∞) (du/((u+1)(u−1)))  =∫_((√2)+1) ^(+∞) ((1/(u−1))−(1/(u+1)))du  =[ln∣((u−1)/(u+1))∣]_((√2)+1) ^(+∞) =ln∣(((√2)+2)/(√2))∣=  L=ln((√2)+1)

L=1+dtt1+t2lett=sinhxdt=coshxdxL=ln(2+1)+coshxsinhx1+sinh2xdx=ln(2+1)+dxsinh(x)=2ln(2+1)+exe2x1dxu=exdu=exdxL=22+1+duu21=22+1+du(u+1)(u1)=2+1+(1u11u+1)du=[lnu1u+1]2+1+=ln2+22∣=L=ln(2+1)

Answered by ajfour last updated on 31/May/18

let   t=tan θ  ; then  I=∫_(π/4) ^(  π/2)  ((sec^2 θdθ)/((tan θ)sec θ))  I=∫_(π/4) ^(  π/2)  cosec θdθ     =ln ∣((cosec (π/2)−cot (π/2))/(cosec (π/4)−cot (π/4)))∣     =ln ((1/((√2)−1))) = ln (1+(√2)) .

lett=tanθ;thenI=π/4π/2sec2θdθ(tanθ)secθI=π/4π/2cosecθdθ=lncosec(π/2)cot(π/2)cosec(π/4)cot(π/4)=ln(121)=ln(1+2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com