All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36182 by prof Abdo imad last updated on 30/May/18
calculate∫1+∞dtt1+t2
Commented by maxmathsup by imad last updated on 15/Aug/18
letI=∫1+∞dtt1+t2dtchangementt=sh(x)giveI=∫argsh(1)+∞1sh(x)ch(x)ch(x)dx=∫ln(1+2)+∞dxsh(x)=∫ln(1+2)+∞2dxex−e−x=∫ln(1+2)+∞2exe2x−1dx=ex=u∫1+2+∞2uu2−1duu=∫1+2+∞2duu2−1=∫1+2+∞(1u−1−1u+1)du=[ln∣u−1u+1∣]1+2+∞=−ln∣22+2∣=−ln(22(1+2))=ln(1+2)⇒I=ln(1+2).
Answered by sma3l2996 last updated on 31/May/18
L=∫1+∞dtt1+t2lett=sinhx⇒dt=coshxdxL=∫ln(2+1)+∞coshxsinhx1+sinh2xdx=∫ln(2+1)+∞dxsinh(x)=2∫ln(2+1)+∞exe2x−1dxu=ex⇒du=exdxL=2∫2+1+∞duu2−1=2∫2+1+∞du(u+1)(u−1)=∫2+1+∞(1u−1−1u+1)du=[ln∣u−1u+1∣]2+1+∞=ln∣2+22∣=L=ln(2+1)
Answered by ajfour last updated on 31/May/18
lett=tanθ;thenI=∫π/4π/2sec2θdθ(tanθ)secθI=∫π/4π/2cosecθdθ=ln∣cosec(π/2)−cot(π/2)cosec(π/4)−cot(π/4)∣=ln(12−1)=ln(1+2).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com