Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116245 by mathmax by abdo last updated on 02/Oct/20

calculate  ∫_1 ^∞  (dx/((2x^2 −1)^5 ))

calculate1dx(2x21)5

Answered by MJS_new last updated on 02/Oct/20

∫(dx/((2x^2 −1)^5 ))=       [Ostrogradski]  =((x(840x^6 −1540x^4 +1022x^2 −279))/(384(2x^2 −1)^4 ))+((35)/(128))∫(dx/(2x^2 −1))=  =((x(840x^6 −1540x^4 +1022x^2 −279))/(384(2x^2 −1)^4 ))+((35(√2))/(512))ln (((√2)x−1)/( (√2)x+1)) +C  ⇒  ∫_1 ^∞ (dx/((2x^2 −1)^5 ))=−((43)/(384))+((35(√2))/(256))ln (1+(√2))

dx(2x21)5=[Ostrogradski]=x(840x61540x4+1022x2279)384(2x21)4+35128dx2x21==x(840x61540x4+1022x2279)384(2x21)4+352512ln2x12x+1+C1dx(2x21)5=43384+352256ln(1+2)

Commented by Bird last updated on 02/Oct/20

thank you sir

thankyousir

Answered by 1549442205PVT last updated on 03/Oct/20

(2/(2x^2 −1))=(1/( (√2)x−1))−(1/( (√2)x+1)).Hence,  Put (1/( (√2)x−1))=a,(1/( (√2)x+1))=b⇒2ab=a−b  (1/((2x^2 −1)^5 ))=(1/(32))×((2/(2x^2 −1)))^5 =(1/(32))(a−b)^5   We have (a−b)^5   =a^5 −b^5 −5ab(a^3 −b^3 )+10(ab)^2 (a−b)  a^5 −b^5 −(5/2)(a−b)(a^3 −b^3 )+((10)/4)(a−b)^3   =a^5 −b^5 −(5/2)(a^4 +b^4 )+(5/2)ab(a^2 +b^2 )+(5/2)[a^3 −b^3 −3ab(a−b)]   =a^5 −b^5 −(5/2)(a^4 +b^4 )+(5/4)(a−b)(a^2 +b^2 )+(5/2)[a^3 −b^3 −3ab(a−b)]]   =a^5 −b^5 −(5/2)(a^4 +b^4 )+(5/4)(a^3 −b^3 )−(5/4)ab(a−b)+(5/2)[a^3 −b^3 −3ab(a−b)]]   =a^5 −b^5 −(5/2)(a^4 +b^4 )+((15)/4)(a^3 −b^3 )−((35)/8)(a−b)^2   =a^5 −b^5 −(5/2)(a^4 +b^4 )+((15)/4)(a^3 −b^3 )−((35)/8)(a^2 +b^2 )+((35)/8)(a−b)  I=∫_1 ^∞ [(1/(32((√2)x−1)^5 ))−(1/(32((√2)x+1)^5 ))−(5/(64((√2)x−1)^4 ))  −(5/(64((√2)x+1)^4 ))+((15)/(128((√2)x−1)^3 ))−((15)/(128((√2)x+1)^3 ))  −((35)/(256((√2)x−1)^2 ))−((35)/(256((√2)x+1)^2 ))+((35)/(256))(a−b)]dx  Put (√2) x−1=u,(√2)x+1=v⇒(√2)dx=du=dv.Hence,  I=−(1/(128(√2)((√2)x−1)^4 ))+(1/(128(√2)((√2)x+1)^4 ))  +(5/(192(√2)((√2)x−1)^3 ))+(5/(192(√2)((√2)x+1)^3 ))  −((15)/( 256(√2)((√2)x−1)^2 ))+((15)/( 256(√2)((√2)x+1)^2 ))  +((35)/( 256(√2)((√2)x−1)))+((35)/( 256(√2)((√2)x+1)))]_1 ^∞   +((35)/(256(√2)))ln∣(((√2)x−1)/( (√2)x+1))∣  =[((−(16(√2)x^3 +8(√2)x))/(128(√2)(2x^2 −1)^4 ))+((5(4(√2)x^3 +6(√2)x))/(192(√2)(2x^2 −1)^3 ))  −((15×(4(√2)x))/( 256(√2)(2x^2 −1)^2 ))+((35×2(√2)x)/( 256(√2)(2x^2 −1)))+((35)/(256(√2)))ln∣(((√2)x−1)/( (√2)x+1))∣]_1 ^∞   =−(((−24(√2))/(128(√2)))+((50(√2))/( 192(√2)))−((60(√2))/( 256(√2)))+((70(√2))/( 256(√2)))+((35)/(256))ln(((√2)−1)/( (√2)+1)))  =−((43)/(384))−((35(√2))/(256))ln((√2)−1)≈0.058434

22x21=12x112x+1.Hence,Put12x1=a,12x+1=b2ab=ab1(2x21)5=132×(22x21)5=132(ab)5Wehave(ab)5=a5b55ab(a3b3)+10(ab)2(ab)a5b552(ab)(a3b3)+104(ab)3=a5b552(a4+b4)+52ab(a2+b2)+52[a3b33ab(ab)]=a5b552(a4+b4)+54(ab)(a2+b2)+52[a3b33ab(ab)]]=a5b552(a4+b4)+54(a3b3)54ab(ab)+52[a3b33ab(ab)]]=a5b552(a4+b4)+154(a3b3)358(ab)2=a5b552(a4+b4)+154(a3b3)358(a2+b2)+358(ab)I=1[132(2x1)5132(2x+1)5564(2x1)4564(2x+1)4+15128(2x1)315128(2x+1)335256(2x1)235256(2x+1)2+35256(ab)]dxPut2x1=u,2x+1=v2dx=du=dv.Hence,I=11282(2x1)4+11282(2x+1)4+51922(2x1)3+51922(2x+1)3152562(2x1)2+152562(2x+1)2+352562(2x1)+352562(2x+1)]1+352562ln2x12x+1=[(162x3+82x)1282(2x21)4+5(42x3+62x)1922(2x21)315×(42x)2562(2x21)2+35×22x2562(2x21)+352562ln2x12x+1]1=(2421282+50219226022562+7022562+35256ln212+1)=43384352256ln(21)0.058434

Commented by Bird last updated on 02/Oct/20

thank you sir for this hardwork

thankyousirforthishardwork

Commented by 1549442205PVT last updated on 03/Oct/20

Thank Sir.You are welcome.

ThankSir.Youarewelcome.

Answered by Bird last updated on 03/Oct/20

I =∫_1 ^∞  (dx/((2x^2 −1)^5 )) ⇒  I =∫_1 ^∞  (dx/((x(√2)−1)^5 (x(√2)+1)^5 ))  =∫_1 ^∞  (dx/((((x(√2)−1)/(x(√2)+1)))^5 (x(√2)+1)^(10) ))  we do the changement ((x(√2)−1)/(x(√2)+1))=t  ⇒x(√2)−1 =tx(√2)+t ⇒  ((√2)−t(√2))x =t+1 ⇒x =((t+1)/( (√2)(1−t)))  ⇒(dx/dt) =(1/( (√2))).((1−t−(t+1)(−1))/((1−t)^2 ))  =(1/( (√2))).(2/((t−1)^2 )) also x(√2)+1 =((t+1)/(1−t))+1  =((t+1+1−t)/(1−t)) =(2/(1−t)) ⇒  ⇒I =∫_(((√2)−1)/( (√2)+1)) ^1  (1/(t^5 ((2/(1−t)))^(10) ))×((√2)/((t−1)^2 ))dt  =((√2)/2^(10) )∫_(3−2(√2)) ^1    (((t−1)^8 )/t^5 )dt  =((√2)/2^(10) ) ∫_(3−2(√2)) ^1 ((Σ_(k=0) ^8  C_8 ^k  t^k (−1)^(8−k) )/t^5 )dt  =((√2)/2^(10) ) Σ_(k=0) ^8  (−1)^k  C_8 ^k  ∫_(3−2(√2)) ^1 t^(k−5) dt  =((√2)/2^(10) )Σ_(k=0 and k≠4) ^8 (−1)^k  C_8 ^k [(1/(k−4))t^(k−4) ]_(3−2(√2)) ^1   +((√2)/2^(10) ) C_8 ^4  [lnt]_(3−2(√2)) ^1   I=((√2)/2^(10) ) Σ_(k=0and k≠4) ^8  (((−1)^(k ) C_8 ^k )/(k−4)){1−(3−2(√2))^(k−4) }  −((√2)/2^(10) ) C_8 ^k ln(3−2(√2))

I=1dx(2x21)5I=1dx(x21)5(x2+1)5=1dx(x21x2+1)5(x2+1)10wedothechangementx21x2+1=tx21=tx2+t(2t2)x=t+1x=t+12(1t)dxdt=12.1t(t+1)(1)(1t)2=12.2(t1)2alsox2+1=t+11t+1=t+1+1t1t=21tI=212+111t5(21t)10×2(t1)2dt=22103221(t1)8t5dt=22103221k=08C8ktk(1)8kt5dt=2210k=08(1)kC8k3221tk5dt=2210k=0andk48(1)kC8k[1k4tk4]3221+2210C84[lnt]3221I=2210k=0andk48(1)kC8kk4{1(322)k4}2210C8kln(322)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com