All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 76360 by mathmax by abdo last updated on 26/Dec/19
calculate∫1∞dxx3(x2−2x+3)
Commented by abdomathmax last updated on 29/Dec/19
letdecomposeF(x)=1x3(x2−2x+3)F(x)=ax+bx2+cx3+dx+ex2−2x+3c=13limx→+∞xF(x)=0=a+d⇒d=−a⇒f(x)=ax+bx2+13x3+−ax+ex2−2x+3f(x)−13x3=ax+bx2+−ax+ex2−2x+3⇒1x3(x2−2x+3)−13x3=...⇒3x3−x5+2x4−3x33x6(x2−2x+3)=...⇒−x+23x2(x2−2x+3)=ax+bx2+−ax+ex2−2x+3b=29⇒f(x)−13x3=ax+29x2+−ax+ex2−2x+3⇒f(x)=ax+29x2+13x3+−ax+ex2−2x+3f(1)=13=a+29+13+−a+e2⇒a2+29+e2=0⇒a+e2=−29⇒a+e=−49f(−1)=−16=−a+29−13+a+e6⇒−56a+e6−19=−16⇒−5a+e−23=−1⇒−5a+e=−13⇒5a−e=13⇒5a−(−a−49)=13⇒6a+49=13⇒6a=13−49=−19⇒a=−154e=−49−a=154−49=−2354⇒f(x)=−154x+29x2+13x3+x54−2354x2−2x+3⇒∫f(x)dx=−154ln∣x∣−29x+13×1−3+1x−3+1+154∫x−23x2−2x+3dx....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com