Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38119 by maxmathsup by imad last updated on 22/Jun/18

calculate  ∫_1 ^(+∞)      (dx/(x^4 (√(x−1))))

calculate1+dxx4x1

Commented by math khazana by abdo last updated on 22/Jun/18

changement (√(x−1))=t give x−1=t^2  ⇒  I = ∫_0 ^(+∞)     ((2tdt)/((1+t^2 )^4 t)) = 2 ∫_0 ^(+∞)   (dt/((1+t^2 )^4 ))  =∫_(−∞) ^(+∞)      (dt/((1+t^2 )^4 )) let consider the complex   function f(z)= (1/((z^2 +1)^4 ))  f(z)= (1/((z−i)^4 (z+i)^4 )) so the poles of f arei and−i  (with multiplicity4)  ∫_(−∞) ^(+∞)  f(z)dz =2iπ Res(f,i)  Res(f,i) =lim_(z→i)  (1/((4−1)!)){(z−i)^4 f(z)}^((3))   =lim_(z→i)   (1/(3!)){ (z+i)^(−4) }^((3))   but  (z+i)^(−4) }^((1)) =−4(z+i)^(−5)   {(z+i)^(−4) }^((2)) =20 (z+i)^(−6)   {(z+i)^(−4) }^((3))  =−120(z+i)^(−7)   Res(f,i) =lim_(z→i)  (1/6) (−120)(z+i)^(−7)   =−20 (2i)^(−7) = ((−20)/(2^7  i^7 )) = −((2^2 .5)/(2^2  .2^5  (−i))) = (5/(32i))  ∫_(−∞) ^(+∞)  f(z)dz =2iπ (5/(32i)) = ((5π)/(16)) ⇒  I =((5π)/(16)) .

changementx1=tgivex1=t2I=0+2tdt(1+t2)4t=20+dt(1+t2)4=+dt(1+t2)4letconsiderthecomplexfunctionf(z)=1(z2+1)4f(z)=1(zi)4(z+i)4sothepolesoffareiandi(withmultiplicity4)+f(z)dz=2iπRes(f,i)Res(f,i)=limzi1(41)!{(zi)4f(z)}(3)=limzi13!{(z+i)4}(3)but(z+i)4}(1)=4(z+i)5{(z+i)4}(2)=20(z+i)6{(z+i)4}(3)=120(z+i)7Res(f,i)=limzi16(120)(z+i)7=20(2i)7=2027i7=22.522.25(i)=532i+f(z)dz=2iπ532i=5π16I=5π16.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com