All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 38119 by maxmathsup by imad last updated on 22/Jun/18
calculate∫1+∞dxx4x−1
Commented by math khazana by abdo last updated on 22/Jun/18
changementx−1=tgivex−1=t2⇒I=∫0+∞2tdt(1+t2)4t=2∫0+∞dt(1+t2)4=∫−∞+∞dt(1+t2)4letconsiderthecomplexfunctionf(z)=1(z2+1)4f(z)=1(z−i)4(z+i)4sothepolesoffareiand−i(withmultiplicity4)∫−∞+∞f(z)dz=2iπRes(f,i)Res(f,i)=limz→i1(4−1)!{(z−i)4f(z)}(3)=limz→i13!{(z+i)−4}(3)but(z+i)−4}(1)=−4(z+i)−5{(z+i)−4}(2)=20(z+i)−6{(z+i)−4}(3)=−120(z+i)−7Res(f,i)=limz→i16(−120)(z+i)−7=−20(2i)−7=−2027i7=−22.522.25(−i)=532i∫−∞+∞f(z)dz=2iπ532i=5π16⇒I=5π16.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com