Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64390 by mathmax by abdo last updated on 17/Jul/19

calculate ∫_1 ^(+∞)   (dx/(x(√(4+x^2 ))))

calculate1+dxx4+x2

Commented by mathmax by abdo last updated on 18/Jul/19

let I =∫_1 ^(+∞)   (dx/(x(√(4+x^2 ))))  changement  x= 2tanθ  give  I =∫_(arctan((1/2))) ^(π/2)   ((2(1+tan^2 θ)dθ)/(2tanθ×2(√(1+tan^2 θ))))  =(1/2) ∫_(arctan((1/2))) ^(π/2)   ((√(1+tan^2 θ))/(tanθ))dθ =(1/2) ∫_(arctan((1/2))) ^(π/2)  (1/(cosθ ((sinθ)/(cosθ))))dθ  =(1/2) ∫_(arctan((1/2))) ^(π/2)  (dθ/(sinθ)) =_(tan((θ/2))=u)    (1/2) ∫_(tan((1/2)arctan((1/2)))) ^1   ((2du)/((1+u^2 )((2u)/(1+u^2 ))))  = ∫_λ ^1   (du/(2u)) =(1/2)ln∣u∣]_λ ^1  =−(1/2)lnλ =−(1/2)ln(tan((1/2)arctan((1/2)))

letI=1+dxx4+x2changementx=2tanθgiveI=arctan(12)π22(1+tan2θ)dθ2tanθ×21+tan2θ=12arctan(12)π21+tan2θtanθdθ=12arctan(12)π21cosθsinθcosθdθ=12arctan(12)π2dθsinθ=tan(θ2)=u12tan(12arctan(12))12du(1+u2)2u1+u2=λ1du2u=12lnu]λ1=12lnλ=12ln(tan(12arctan(12))

Commented by mathmax by abdo last updated on 18/Jul/19

another way  we use the changement x =2sh(t) ⇒  A =∫_(argsh((1/2))) ^(+∞)   ((2ch(t)dt)/(2sh(t)2 ch(t))) =(1/2) ∫_(ln((1/2)+(√(1+(1/4))))) ^(+∞)  (dt/((e^t −e^(−t) )/2))  =∫_(ln((1/2)+((√5)/2))) ^(+∞)    (dt/(e^t −e^(−t) )) =_(e^t =u)    ∫_((1+(√5))/2) ^(+∞)     (du/(u(u−(1/u))))  =∫_((1+(√5))/2) ^(+∞)    (du/(u^2 −1)) =(1/2) ∫_((1+(√5))/2) ^(+∞) {(1/(u−1)) −(1/(u+1))}du  =(1/2)[ln∣((u−1)/(u+1))∣]_((1+(√5))/2) ^(+∞)  =(1/2){ −ln∣((((1+(√5))/2)−1)/(((1+(√5))/2)+1))∣}  =−(1/2)ln∣(((√5)−1)/((√5)+3))∣ =(1/2)ln((((√5)+3)/((√5)−1))) .

anotherwayweusethechangementx=2sh(t)A=argsh(12)+2ch(t)dt2sh(t)2ch(t)=12ln(12+1+14)+dtetet2=ln(12+52)+dtetet=et=u1+52+duu(u1u)=1+52+duu21=121+52+{1u11u+1}du=12[lnu1u+1]1+52+=12{ln1+5211+52+1}=12ln515+3=12ln(5+351).

Answered by Tanmay chaudhury last updated on 17/Jul/19

∫((xdx)/(x^2 (√(4+x^2 )) ))  t^2 =4+x^2    2tdt=2xdx  ∫((tdt)/((t^2 −4)t))  (1/4)∫(((t+2)−(t−2))/((t+2)(t−2)))dt  (1/4)[∫(dt/(t−2))−∫(dt/(t+2))]  (1/4)ln(((t−2)/(t+2)))+c  (1/4)ln((((√(4+x^2 )) −2)/((√(4+x^2 )) +2)))+c  (1/4)∣ln((((√(4+x^2 )) −2)/((√(4+x^2 )) +2)))∣_1 ^(+∞)   (1/4)∣ln(((1−(2/((√(4+x^2 ))[)))/(1+(2/((√(4+x^2 )) )))))∣_1 ^(+∞)   =(1/4)(ln(((1−0)/(1+0)))−ln((((√5) −2)/((√5) +2))))  =−(1/4)×ln((((√5) −2)/((√5) +2)))

xdxx24+x2t2=4+x22tdt=2xdxtdt(t24)t14(t+2)(t2)(t+2)(t2)dt14[dtt2dtt+2]14ln(t2t+2)+c14ln(4+x224+x2+2)+c14ln(4+x224+x2+2)1+14ln(124+x2[1+24+x2)1+=14(ln(101+0)ln(525+2))=14×ln(525+2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com