All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 32301 by abdo imad last updated on 22/Mar/18
calculate∫1eln(1+x)dx.
Commented by abdo imad last updated on 01/Apr/18
ch.x=tgiveI=∫1e(2t)ln(1+t)dt.bypartsI=([t2ln(1+t)]1e−∫1et21+tdt)=(eln(1+e)−ln(2))−∫1et2−1+11+tdt∫1et2−1+11+tdt=∫1e(t−1)dt+∫1edt1+t=[t22−t]1e+[ln(1+t)]1e=e2−e−12+1+ln(1+e)−ln(2)=e2−e+12+ln(1+e)−ln(2)I=eln(1+e)−ln(2)−e2+e−12−ln(1+e)+ln(2)I=(e−1)ln(1+e)+e−e2−12.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com