Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36056 by abdo mathsup 649 cc last updated on 28/May/18

calculate  ∫_(−∞) ^(+∞)    ((2x)/((x^2  +mx +1)^2 ))dx with ∣m∣<2

calculate+2x(x2+mx+1)2dxwithm∣<2

Commented by abdo mathsup 649 cc last updated on 30/May/18

let consider the complex function  ϕ(z) = ((2z)/((z^2  +mz +1)^2 ))  poles of ϕ!  roots of z^(2 )  +mz +1  Δ =m^2  −4 <0  because ∣m∣<2 ⇒  Δ =−(4−m^2 ) ={i(√(4−m^2 )) }^2   z_1 = ((−m +i(√(4−m^2 )))/2)  and z_2  = ((−m−i(√(4−m^2 )))/2)  the poles of ϕ are z_1  and z_2   (doubles)  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Res(ϕ, z_1 )  ϕ(z) = ((2z)/((z−z_1 )^2 (z−z_2 )^2 ))  Res(ϕ,z_1 ) =lim_(z→z_1  )  (1/((2−1):)){ (z−z_1 )^2 ϕ(z)}^′

letconsiderthecomplexfunctionφ(z)=2z(z2+mz+1)2polesofφ!rootsofz2+mz+1Δ=m24<0becausem∣<2Δ=(4m2)={i4m2}2z1=m+i4m22andz2=mi4m22thepolesofφarez1andz2(doubles)+φ(z)dz=2iπRes(φ,z1)φ(z)=2z(zz1)2(zz2)2Res(φ,z1)=limzz11(21):{(zz1)2φ(z)}

Commented by abdo mathsup 649 cc last updated on 30/May/18

Res(ϕ ,z_1 ) =lim_(z→z_1 )   { ((2z)/((z−z_2 )^2 ))}^′   =lim_(z→z_1 )    ((2(z−z_2 )^2   −2z 2(z−z_2 ))/((z−z_2 )^4 ))  =lim_(z→z_1 )    ((2(z−z_2 ) −4z)/((z−z_2 )^3 )) = 2 ((z_1  −z_2  −2z_1 )/((z_1  −z_2 )^3 ))  =2((i(√(4−m^2 ))  −2((−m+i(√(4−m^2 )))/2))/((i(√(4−m^2 )))^3 ))  =2  (m/(−i(4−m^2 )(√(4−m^( ))))  =  ((−2m)/(i(4−m^2 )(√(4−m^2 ))))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ ((−2m)/(i(4−m^2 )(√(4−m^2 ))))  =  ((−4mπ)/((4−m^2 )(√(4−m^2 ))))  so   I = ((−4mπ)/((4−m^2 )(√(4−m^2 )))) .

Res(φ,z1)=limzz1{2z(zz2)2}=limzz12(zz2)22z2(zz2)(zz2)4=limzz12(zz2)4z(zz2)3=2z1z22z1(z1z2)3=2i4m22m+i4m22(i4m2)3=2mi(4m2)4m(=2mi(4m2)4m2+φ(z)dz=2iπ2mi(4m2)4m2=4mπ(4m2)4m2soI=4mπ(4m2)4m2.

Answered by sma3l2996 last updated on 28/May/18

I=∫_(−∞) ^(+∞) ((2x)/((x^2 +mx+1)^2 ))dx=∫_(−∞) ^(+∞) ((2x+m−m)/((x^2 +mx+1)^2 ))dx   =−[(1/(x^2 +mx+1))]_(−∞) ^(+∞) −m∫_(−∞) ^(+∞) (dx/((x^2 +2×(m/2)×x+(m^2 /4)−(m^2 /4)+1)^2 ))  =0−m∫_(−∞) ^(+∞) (dx/(((x+(m/2))^2 +((4−m^2 )/4))^2 ))  =−m∫_(−∞) ^(+∞) (dx/((((4−m^2 )/4)((((2x+m)/(√(4−m^2 ))))^2 +1))^2 ))   /  ∣m∣<2  let  u=((2x+m)/(√(4−m^2 )))⇒dx=((√(4−m^2 ))/2)du  I=−((8m(√(4−m^2 )))/((4−m^2 )^2 ))∫_(−∞) ^(+∞) (du/((u^2 +1)^2 ))  tant=u⇒dt=(du/(1+u^2 ))  (du/((u^2 +1)^2 ))=(dt/(1+tan^2 t))=cos^2 (t)dt=(((1+cos(2t))/2))dt  ∫_(−π/2) ^(π/2) (1+cos(2t))dt=[t+(1/2)sin2t]_(−π/2) ^(π/2) =π  I=−((4πm(√(4−m^2 )))/((4−m^2 )^2 ))

I=+2x(x2+mx+1)2dx=+2x+mm(x2+mx+1)2dx=[1x2+mx+1]+m+dx(x2+2×m2×x+m24m24+1)2=0m+dx((x+m2)2+4m24)2=m+dx(4m24((2x+m4m2)2+1))2/m∣<2letu=2x+m4m2dx=4m22duI=8m4m2(4m2)2+du(u2+1)2tant=udt=du1+u2du(u2+1)2=dt1+tan2t=cos2(t)dt=(1+cos(2t)2)dtπ/2π/2(1+cos(2t))dt=[t+12sin2t]π/2π/2=πI=4πm4m2(4m2)2

Commented by abdo mathsup 649 cc last updated on 30/May/18

correct sir sma3l  thanks a lots.

correctsirsma3lthanksalots.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com