Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66337 by mathmax by abdo last updated on 12/Aug/19

calculate ∫_(−7) ^(−3)   (((x−1)dx)/(√(x^2  +2x−3)))

calculate73(x1)dxx2+2x3

Commented by Prithwish sen last updated on 13/Aug/19

lim_(ε→−3) ∫_(−7) ^ε ((√(x−1))/(√(x+3))) dx  = lim_(ε→−3)  [(√((x−1)(x+3) ))−4ln∣(√(x+3))+(√(x−1))∣]_(−7) ^ε   =4ln∣1+(√2)∣−4(√2)  please check.

limϵ37ϵx1x+3dx=limϵ3[(x1)(x+3)4lnx+3+x1]7ϵ=4ln1+242pleasecheck.

Commented by mathmax by abdo last updated on 13/Aug/19

let I =∫_(−7) ^(−3)   ((x−1)/(√(x^2  +2x−3)))dx  we have  x^2  +2x−3 =x^2  +2x+1−4 =(x+1)^2 −4 =(x+1−2)(x+1+2)  =(x−1)(x+3) ⇒ I =∫_(−7) ^(−3)  ((x−1)/(√((x−1)(x+3))))dx  =∫_(−7) ^(−3)  ((x−1)/(√((1−x)(−x−3))))dx  =−∫_(−7) ^(−3)  (((√(1−x)))^2 )/((√(1−x))(√(−x−3))))dx  =−∫_(−7) ^(−3)    ((√(1−x))/(√(−x−3))) dx  we use the changement (√(−x−3))=t ⇒  −x−3=t^2  ⇒−x =3+t^2  ⇒x =−3−t^2  ⇒  I =−∫_2 ^0  ((√(1+3+t^2 ))/t)(−2t)dt =−2∫_0 ^2 (√(t^2  +4)) dt  =_(t=2sh(u))    −2∫_0 ^(ln(1+(√2))) 2ch(t)(2ch(t)dt =−8 ∫_0 ^(ln(1+(√2)))  ((ch(2t)−1)/2)dt  =−4 ∫_0 ^(ln(1+(√2))) (ch(2t)−1)dt=4ln(1+(√2))−4[(1/2)sh(2t)]_0 ^(ln(1+(√2)))   =4ln(1+(√2))−2[((e^(2t) −e^(−2t) )/2)]_0 ^(ln(1+(√2)))  ⇒  I =4ln(1+(√2))−{(1+(√2))^2 −(1/((1+(√2))^2 ))}

letI=73x1x2+2x3dxwehavex2+2x3=x2+2x+14=(x+1)24=(x+12)(x+1+2)=(x1)(x+3)I=73x1(x1)(x+3)dx=73x1(1x)(x3)dx=731x)21xx3dx=731xx3dxweusethechangementx3=tx3=t2x=3+t2x=3t2I=201+3+t2t(2t)dt=202t2+4dt=t=2sh(u)20ln(1+2)2ch(t)(2ch(t)dt=80ln(1+2)ch(2t)12dt=40ln(1+2)(ch(2t)1)dt=4ln(1+2)4[12sh(2t)]0ln(1+2)=4ln(1+2)2[e2te2t2]0ln(1+2)I=4ln(1+2){(1+2)21(1+2)2}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com