Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 68595 by Abdo msup. last updated on 14/Sep/19

calculate  A_λ =∫_0 ^∞     (e^(−λx^2 ) /(x^4 +1))dx  with λ>0  and   find ∫_0 ^1  A_λ  dλ

calculateAλ=0eλx2x4+1dxwithλ>0andfind01Aλdλ

Commented by mathmax by abdo last updated on 14/Sep/19

A_λ = ∫_0 ^∞  (e^(−λx^2 ) /(x^4  +1))dx ⇒2A_λ =∫_(−∞) ^(+∞)  (e^(−λx^2 ) /(x^4  +1))dx let W(z) =(e^(−λz^2 ) /(z^4 +1))  poles of W?  we have W(z) =(e^(−λx^2 ) /((z^2 −i)(z^2 +i)))  =(e^(−λx^2 ) /((z−(√i))(z+(√i))(z−(√(−i)))(2+(√(−i))))) =(e^(−λx^2 ) /((z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  so the poles of W are +^− e^((iπ)/4)  and +^− e^(−((iπ)/4))   residus tbeorem give   ∫_(−∞) ^(+∞)  W(z)dz =2iπ{Res(W,e^((iπ)/4) )+Res(W,−e^(−((iπ)/4)) )}  Res(W,e^((iπ)/4) ) =(e^(−λ(i)) /(2e^((iπ)/4) (2i))) =(1/(4i)) e^(−λi−((iπ)/4))  =(1/(4i))e^(−(λ+(π/4))i)   Res(W,−e^(−((iπ)/4)) ) = (e^(−λ(−i)) /((−2i)(−2e^(−((iπ)/4)) ))) =(1/(4i)) e^(λi+((iπ)/4)) =(1/(4i)) e^((λ+(π/4))i)  ⇒  ∫_(−∞) ^(+∞)  W(z)dz =2iπ{ (1/(4i))e^(−(λ+(π/4))i)  +(1/(4i)) e^((λ+(π/4))i) }  =(π/2){ 2Re(e^((λ+(π/4))i) ) =π  cos((π/4) +λ) ⇒A_λ =(π/2)cos((π/4) +λ)  ∫_0 ^1  A_λ dλ =(π/2) ∫_0 ^1  cos(λ+(π/4)) =[sin(λ+(π/4))]_0 ^1  =sin(1+(π/4))−((√2)/2)

Aλ=0eλx2x4+1dx2Aλ=+eλx2x4+1dxletW(z)=eλz2z4+1polesofW?wehaveW(z)=eλx2(z2i)(z2+i)=eλx2(zi)(z+i)(zi)(2+i)=eλx2(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)sothepolesofWare+eiπ4and+eiπ4residustbeoremgive+W(z)dz=2iπ{Res(W,eiπ4)+Res(W,eiπ4)}Res(W,eiπ4)=eλ(i)2eiπ4(2i)=14ieλiiπ4=14ie(λ+π4)iRes(W,eiπ4)=eλ(i)(2i)(2eiπ4)=14ieλi+iπ4=14ie(λ+π4)i+W(z)dz=2iπ{14ie(λ+π4)i+14ie(λ+π4)i}=π2{2Re(e(λ+π4)i)=πcos(π4+λ)Aλ=π2cos(π4+λ)01Aλdλ=π201cos(λ+π4)=[sin(λ+π4)]01=sin(1+π4)22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com