All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 68595 by Abdo msup. last updated on 14/Sep/19
calculateAλ=∫0∞e−λx2x4+1dxwithλ>0andfind∫01Aλdλ
Commented by mathmax by abdo last updated on 14/Sep/19
Aλ=∫0∞e−λx2x4+1dx⇒2Aλ=∫−∞+∞e−λx2x4+1dxletW(z)=e−λz2z4+1polesofW?wehaveW(z)=e−λx2(z2−i)(z2+i)=e−λx2(z−i)(z+i)(z−−i)(2+−i)=e−λx2(z−eiπ4)(z+eiπ4)(z−e−iπ4)(z+e−iπ4)sothepolesofWare+−eiπ4and+−e−iπ4residustbeoremgive∫−∞+∞W(z)dz=2iπ{Res(W,eiπ4)+Res(W,−e−iπ4)}Res(W,eiπ4)=e−λ(i)2eiπ4(2i)=14ie−λi−iπ4=14ie−(λ+π4)iRes(W,−e−iπ4)=e−λ(−i)(−2i)(−2e−iπ4)=14ieλi+iπ4=14ie(λ+π4)i⇒∫−∞+∞W(z)dz=2iπ{14ie−(λ+π4)i+14ie(λ+π4)i}=π2{2Re(e(λ+π4)i)=πcos(π4+λ)⇒Aλ=π2cos(π4+λ)∫01Aλdλ=π2∫01cos(λ+π4)=[sin(λ+π4)]01=sin(1+π4)−22
Terms of Service
Privacy Policy
Contact: info@tinkutara.com